Additional investigations of a new kinetic method to follow transition-metal nanocluster formation, including the discovery of heterolytic hydrogen activation in nanocluster nucleation reactions

Widegren, JA
Aiken, JD
Özkar, Saim
Finke, RG
A few years ago we developed a new kinetic method for following transition-metal nanocluster formation in which the resultant nanocluster's catalytic activity was used as a reporter reaction via the pseudoelementary step concept. This method in turn yielded insights into a new, broadly applicable mechanism of nanocluster formation under H-2 consisting of (a) slow, continuous nucleation, A --> B, followed by (b) fast autocatalytic surface growth, A + B --> 2B (A = the nanocluster precursor, [Bu4N](5)Na-3[(1,5-COD)Ir .P2W15Nb3O62], B = the resultant nanocluster's surface metal atoms), in which the nanocluster behaves as a "living metal polymer". Herein, this new kinetic method is investigated and tested further: (i) by following the Ir(0)(similar to 300) nanocluster's kinetics of formation more directly via the H-2 uptake reaction of the [Bu4N](5)Na-3[(1,5-COD)Ir .P2W15Nb3O62] precursor-does this also show an autocatalytic Hz uptake curve?; (ii) by seeing if the predicted initially small, then larger (past the induction period) sizes of the nanoclusters are verifiable directly by TEM; (iii) by testing commercial nonlinear least-squares software (Microcal's ORIGIN) in the kinetic analysis and with the goal of making the new kinetic method readily available to others; (iv) by showing when it is necessary to correct for the solvent vapor pressure, and how to do so, in the H-2 pressure-loss measurements when more volatile solvents such as acetone are used in the nanocluster formation reaction; (iv) by showing whether the new kinetic method can be successfully used in other nanocluster formation reactions of different metals and for more difficult reactions such as arene hydrogenation; and (v) by numerical integration simulations of the first 45 or so steps in the nanocluster formation reaction-does this atomically detailed mechanism show autocatalysis or not, and if so can it be fit by the A B, A + B --> 2B mechanism? Tests of each of the issues (i)-(v) are reported in the present contribution. Finally, (vi) the new kinetic method has been exploited to yield insights into higher valent metals that undergo nucleation under H-2, namely, to discover and report for the first time the significance of heterolytic hydrogenation activation, with its requirement for added base in the nanocluster formation reactions of higher valent, electrophilic metals such as Pd(II), Pt(IV), Ru(III), Rh(III), Ag(I), Au(III), Cu(II), and Ir(III).


A New Method for Prediction of the Transient Force Generated by a Liquid Slug Impact on an Elbow of an Initially Voided Line
KAYHAN, Bulent A.; Bozkuş, Zafer (ASME International, 2011-04-01)
The aim of the present study is to predict the impact force applied by an individual transient liquid slug on an elbow at the end of a horizontal and initially empty pipeline. The liquid slug is driven by pressurized air in a tank located upstream of the pipeline. The time dependent pressure distribution along the elbow and a vertical extension segment after the elbow are solved with a 1D numerical approach along a curved line mesh. An assumed and calibrated axial turbulent velocity profile function with 3D...
Investigation of Droplet Flame Interactions through Experimental and Numerical Approaches
Kaya Eyice, Deniz; Yozgatlıgil, Ahmet; Aksel, M. Haluk; Department of Mechanical Engineering (2023-1-12)
Spray combustion applications involve complex phenomena such as atomization, droplet vaporization, mixing, turbulence, chemical kinetics, and the interaction of these processes. In two-phase combustion, one of the fundamental processes is the interaction of a single droplet with a flamelet. Therefore, it is essential to understand the physics of isolated droplet evaporation and its effects on the flame front to study more complex flames. The aim of this study is to investigate droplet evaporation, flame ch...
New observations of isolated ethanol droplet flames in microgravity conditions
Park, Seul-Hyun; Choi, Seuk-Cheun; Choi, Mun Young; Yozgatlıgil, Ahmet (Informa UK Limited, 2008-01-01)
Spherically symmetric ethanol droplet combustion experiments were performed to investigate the influence of initial droplet diameter, ambient pressure and inert substitution on the burning and sooting behaviors of ethanol droplet flames. Experiments were performed using the 2.2 sec reduced-gravity droptower facilities at the NASA Glenn Research Center. Noting the importance of transport characteristics of heat and species and their attendant effects on flame temperature and residence time on the sooting mec...
A laboratory study of Combustion Override Split-Production Horizontal well (COSH) process
Bağcı, Ali Suat; Aybak, T (2000-08-01)
A 3D physical model has been developed to investigate the Combustion Override Split-Production Horizontal well (COSH) process; The 3D model is a rectangular box with dimensions of 18 cm by 54 cm by 12 cm. The vertical well was used as an air injection well and the top horizontal well was used to collect the gases generated by the combustion process. A horizontal production well was placed near the base of the model to collect hot crude oil and water. A total of eight experiments, six of dry combustion and t...
An ab initio surface study of FeTi for hydrogen storage applications
Izanlou, Afshin; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2009)
In this study, the effect of surface crystallography on hydrogen molecule adsorption properties on FeTi surfaces is presented. Furthermore, the substitutional adsorption of 3d-transition metals on (001), (110) and (111) surfaces of FeTi is studied. Using ab initio pseudopotential methods, the adsorption energies of hydrogen and 3d-transition metals are calculated. In substitutional adsorption of 3d-transition metals, Fe-terminated (111) and Ti-terminated (001) surfaces, are found to express the lowest adsor...
Citation Formats
J. Widegren, J. Aiken, S. Özkar, and R. Finke, “Additional investigations of a new kinetic method to follow transition-metal nanocluster formation, including the discovery of heterolytic hydrogen activation in nanocluster nucleation reactions,” CHEMISTRY OF MATERIALS, pp. 312–324, 2001, Accessed: 00, 2021. [Online]. Available: