Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39

Hydrogen storage capacity on Cu(I)-exchanged SSZ-39 (AEI), -SSZ-13 (CHA) and Ultra stable-Y (USeY, FAU) at temperatures between 279 K and 304 K are investigated. The gravimetric hydrogen storage capacity values reaching 83 mmol H-2 g(-1) (at 279 K and 1 bar) are found to be comparable with the highest adsorption capacity values reported on metal-organic frameworks. The volumetric hydrogen storage capacity values; on the other hand, are found to be more than three times of those reported on metal-organic frameworks (0.57 g/L on Cu(I)-SSZ39 at 1 bar and 296 K vs. ca. 0.18 g/L on Co-2(m-dobdc) at 1 bar and 298 K (Kapelewski MT, Runcevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA et al. Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni-2(m-dobdc) at Near-Ambient Temperatures. Chem Mater 2018; 30:8179e89)). The isosteric heat of adsorption values are calculated to be between 80 kJ mol(-1) and 49 kJ mol(-1) on Cu(I)-SSZ-39 and between 22 kJ mol(-1) and 15 kJ mol(-1) on Cu(I)-US-Y indicating H2 adsorption mainly at Cu(I) cations located at the eight-membered rings on Cu(I)-SSZ-39 and at six-membered rings on Cu(I)-US-Y. Hydrogen adsorption experiments performed at 77 K showed higher adsorption capacity values for Cu(I)-SSZ-39 at 1 bar, but Cu(I)-US-Y showed potential for hydrogen storage at higher pressure values. (c) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.


Experimental investigation of CO tolerance in high temperature PEM fuel cells
DEVRİM, YILSER; Albostan, Ayhan; Devrim, Huseyin (Elsevier BV, 2018-10-04)
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to th...
Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor
Boran, Asli; Erkan, Serdar; Özkar, Saim; Eroglu, Inci (Wiley, 2013-04-01)
Here, we report the results of a kinetic study on the hydrogen generation from the catalytic hydrolysis of sodium borohydride in a differential flow reactor. As catalyst platinum supported on carbon (Pt/C) was used in two forms: either as powder or coated on carbon cloth. For optimization of the system several parameters such as sodium hydroxide concentration, sodium borohydride concentration and the flow rate of the feed solution were varied. It was found that the H2 generation rate increases with an incre...
Fundamentals of hydrogen storage processes over Ru/SiO2 and Ru/Vulcan
ASLAN, MUSTAFA YASİN; Üner, Deniz (Elsevier BV, 2019-07-12)
Hydrogen adsorption and desorption over Ru/SiO2 and Ru/Vulcan are investigated in terms of hydrogen storage and release characteristics by both dynamic and static experiments. Ru particle dispersions as a function of metal loading were determined by HR-TEM and volumetric chemisorption experiments. Vulcan was more accommodating for spillover hydrogen than SiO2. High Ru dispersions, i.e., small particle sizes, favored the amount of hydrogen spillover to Vulcan, as revealed by temperature programmed desorption...
Development of non-noble Co–N–C electrocatalyst for high-temperature proton exchange membrane fuel cells
Eren, Enis Oğuzhan; Özkan, Necati; Devrim, Yılser (Elsevier BV, 2020-11-27)
© 2020 Hydrogen Energy Publications LLCThe development of a non-noble Co–N/MWCNT (MWCNT = multi-walled carbon nanotubes) electrocatalyst is achieved through the high-temperature pyrolysis method and successfully characterized by five-step physico-chemical analysis. By utilizing high-resolution analytical surface characterization methods, the chemical states of elements are determined, and the presence of Co-Nx sites is confirmed. ORR activity of a Co–N/MWCNT is found to be auspicious. The maximum number of ...
Effective factors improving catalyst layers of PEM fuel cell
Avcioglu, Gokce S.; FIÇICILAR, BERKER; Eroğlu, İnci (Elsevier BV, 2018-06-07)
Cathode catalyst layer has an important role on water management across the membrane electrode assembly (MEA). Effect of Pt percentage in commercial catalyst and Pt loading from the viewpoint of activity and water management on performance was investigated. Physical and electrochemical characteristics of conventional and hydrophobic catalyst layers were compared. Performance results revealed that power density of conventional catalyst layers (CLs) increased from 0.28 to 0.64 W/cm(2) at 0.45 V with the incre...
Citation Formats
B. İpek Torun, “Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, pp. 34972–34982, 2020, Accessed: 00, 2021. [Online]. Available: