Cost Function Determination for a WIG in Predefined Path and Height Using Conjugate Gradient Method

2020-07-01
© 2020 IEEE.Wing in ground effect vehicles (WIG) is the sort of land and water capable of flying right upfront closeness of ground, utilizing the streamlined association between the wings and the ground (Ocean or Earth surface). The ground impact (GE) is the expansion in power, which is following up on a lifting surface or wing when it approaches the closeness of the ground. It expands its effectiveness in 3-4 times. In this paper, a mathematical model including GE, optimal design, gravity, climatic impacts, mass inactivity, forces, and moments is found and applied to the WIG. Nonlinear six degrees of freedom (6DOF) dynamical model is then executed in MATLAB/Simulink. Then, autopilot structures were installed with cascaded PID controllers. Using the auto-Tuning feature of MATLAB, our results show that the mathematical model represented in the paper can utilize effectively for autopilot applications.

Suggestions

Forecasting of ionospheric electron density trough for characterization of aerospace medium
Kocabaş, Zeynep; Tulunay, Yurdanur; Department of Aerospace Engineering (2009)
Modeling the ionosphere, where the effects of solar dynamo becomes more effective to space based and ground borne activities, has an undeniable importance for telecommunication and navigation purposes. Mid-latitude electron density trough is an interesting phenomenon in characterizing the behavior of the ionosphere, especially during disturbed conditions. Modeling the mid-latitude electron density trough is a very popular research subject which has been studied by several researchers until now. In this work...
Generic trim analysis and simulation algorithm creation for design and optimization of the fixed wing aircraft
Özdemir, Mustafa; Kurtuluş, Dilek Funda (2021-09-10)
In order to design a fixed wing aircraft, certain phases are needed to perform. From these phases, trim analysis and simulation are very crucial for design process. Trim and simulation analysis enable to calculate performance and stability characteristics of the aircraft. After aerodynamic, weight and engine database creation, the next step is trim analysis and simulations. However, database creation phase requires a huge amount of computing time, and for the preliminary design phase it is needed to perform...
Design, modeling and control of a hybrid UAV
Muratoğlu, Abdurrahim; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
Vertical takeoff and landing (VTOL) vehicles that can fly like conventional airplanes after the takeoff, provide a promising area to find applications in the future. These hybrid vehicles combine the advantages of rotary-wing and fixed-wing aircraft configurations such as having capability of hovering flight, takeoff and landing without utilizing a runway, long range, high speed flight with reasonable endurance. In this study, a tilt-rotor tricopter VTOL UAV having a conventional fixed-wing airframe is desi...
Control system design and implementation of a tilt rotor UAV
Cevher, Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 ...
Experimental Investigation of Viscous Flow Normal to NACA 0012 Airfoil at low Reynolds Numbers
Gunaydınoglu, Erkan; Kurtuluş, Dilek Funda (null; 2018-07-11)
The low Reynolds number aerodynamics at high angle of attack is crucial for the design of unmanned aerial vehicles and wind turbine blades. The current study aims to enhance the insight on the near wake of airfoils normal to free stream. The near wake structure on a NACA 0012 airfoil normal to free-stream is measured with particle image velocimetry in the range of Reynolds number 7000 to 20000. The velocity and vorticity fields of the wake structures are studied and further analysis with Proper Orthogonal D...
Citation Formats
R. Shabani, G. Nalçacı, M. K. Leblebicioğlu, and M. Ermiş, “Cost Function Determination for a WIG in Predefined Path and Height Using Conjugate Gradient Method,” 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70219.