Poly(2-alkyl-2-oxazoline) Based Multilayers as Antibacterial Coatings

2018-09-12
Çağlı, Eda
Ugur, Esma
Ulusan, Sinem
Banerjee, Sreeparna
Erel Göktepe, İrem

Suggestions

Poly(2-ethyl-2-oxazoline-co-ethyleneimine)-block-poly(epsilon-caprolactone) based micelles: synthesis, characterization, peptide conjugation and cytotoxic activity
Gulyuz, Sevgi; Ozkose, Umut Ugur; Khalily, Melek Parlak; Kesici, Mehmet Seçkin; Kocak, Polen; Bolat, Zeynep Busra; Kara, Aslı; Öztürk, Naile; Özçubukçu, Salih; Bozkır, Asuman; Alptürk, Onur; Telci, Dilek; Şahin, Fikrettin; Vural, Imran; Yilmaz, Ozgur (2021-07-01)
Here we present self-assembled polymeric micelles as potential delivery systems for therapeutic agents with highly tunable properties. The major goal of this study is to design breast and prostate cancer specific targeting peptide modified PEtOx-co-PEI-b-PCL block copolymer based micelles as a targetable carrier system in cancer treatment. For this, a series of micelles based on poly(2-ethyl-2-oxazoline)-co-polyethyleneimine-block-poly(epsilon-caprolactone) [P(EtOx-co-EI)-b-PCL] copolymers with two differen...
Poly(epsilon-caprolactone) Composite Scaffolds Loaded with Gentamicin-Containing beta-Tricalcium Phosphate/Gelatin Microspheres for Bone Tissue Engineering Applications
Sezer, Umran Aydemir; Arslantunalı Şahin, Damla; Aksoy, Eda Ayse; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2014-04-15)
In this study, novel poly(epsilon-caprolactone) (PCL) composite scaffolds were prepared for bone tissue engineering applications, where gentamicin-loaded -tricalcium phosphate (-TCP)/gelatin microspheres were added to PCL. The effects of the amount of -TCP/gelatin microspheres added to the PCL scaffold on various properties, such as the gentamicin release rate, biodegradability, morphology, mechanical strength, and pore size distribution, were investigated. A higher amount of filler caused a reduction in th...
Poly(hydroxybutyrate-co-hydroxyvalerate) nanocapsules as enzyme carriers for cancer therapy: an in vitro study
Baran, ET; Ozer, N; Hasırcı, Vasıf Nejat (2002-05-01)
In the present paper, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocapsules were prepared by a double emulsion-solvent evaporation procedure (w/o/w) for the encapsulation of model enzymes (L-asparaginase, catalase, glucose oxidase) and bovine serum albumin. To increase the encapsulation efficiency and activity of the encapsulated enzyme, numerous modifications were made in the compositions of the phases of double emulsion. For the preparation of low molecular weight PHBV, the polymer was treated with so...
Poly(triphenylamine-thiazolo[5,4-D]Thiazole) copolymers dye for bulk heterojunction organic solar cells
Çırpan, Ali; Gülfen, Mustafa; Uğurlu, Çiğden; Hızalan, Gönül; Toppare, Levent Kamil (2018-07-06)
The polymer-based solar cells (PSCs) are promising due to their simple fabrication procedure, low material cost and flexibility. In recent years, PSCs based on the conjugated polymers as the electron donor materials blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) have been investigated extensively using a single bulk heterojunction (BHJ) device structure. The semiconductivity and solar cell material properties of thiazolo[5,4- d]thiazoles have been investigated previously [1,2]. In the pres...
Poly( amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering
Svobodova, Jana; Proks, Vladimir; Karabiyik, Ozge; Koyuncu, Ayse Ceren Calikoglu; Kose, Gamze Torun; Rypacek, Frantisek; Studenovska, Hana (Wiley, 2017-03-01)
In this study, fibrous scaffolds based on poly(gamma-benzyl-L-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 mu m were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an i...
Citation Formats
E. Çağlı, E. Ugur, S. Ulusan, S. Banerjee, and İ. Erel Göktepe, “Poly(2-alkyl-2-oxazoline) Based Multilayers as Antibacterial Coatings,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/71712.