Near-critical gas/condensate relative permeability of carbonates

2006-07-11
Calisgan, H.
Demiral, B.
Akın, Serhat
The productivity of most gas condensate wells is reduced significantly due to condensate banking when the bottom-hole pressure falls below the dew point. The liquid drop-out such gas wells leads to reduced gas relative permeability and thus to low recovery problems. An understanding of the characteristics of the high-velocity gas-condensate flow and relative permeabilities is necessary for accurate forecast of well productivity. In order to tackle this goal, a series of relative permeability measurements on a moderate permeability carbonate core, using a binary retrograde condensate fluid sample were conducted near miscible conditions. The experiments used a pseudo-steady-state technique at high pressure and high velocity, measuring relative permeability under conditions similar to the near well region of a carbonate gas-condensate reservoir. Furthermore, the flow of gas and condensate at different force ratios (capillary and bond numbers) are investigated. It was observed that relative permeability depended on fluid composition and flow rate as well as condensate and water saturations. It was observed that as the flow rate of wetting phase (condensate) increased or the interfacial tension decreased, relative permeability curves shifted to left. It was found that a simple three-parameter mathematical model that depends on a new dimensionless number called condensate number successfully models the gas-condensate relative permeability data. The developed model resulted in a good agreement with published gas-condensate relative permeability data as well as end point relative permeabilities and saturations.

Suggestions

Comprehensive modelling of gas condensate relative permeability and its influence on field performance
Çalışgan, Hüseyin; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2005)
The productivity of most gas condensate wells is reduced significantly due to condensate banking when the bottom hole pressure falls below the dew point. The liquid drop-out in these very high rate gas wells may lead to low recovery problems. The most important parameter for determining condensate well productivity is the effective gas permeability in the near wellbore region, where very high velocities can occur. An understanding of the characteristics of the high-velocity gas-condensate flow and relative ...
Near Critical Gas Condensate Relative Permeability of Carbonates
Çalışgan, Hüseyin; Akın, Serhat (2008-01-01)
Typical gas condensate fields contain a gas/liquid system during depletion. Such systems are difficult to model experimentally because they exhibit near-miscible behavior at high pressure and temperature. One way to simplify laboratory experimentation is to use a binary retrograde condensate fluid and to adjust temperature to control miscibility. A series of relative permeability test were conducted on a moderate-permeability carbonate core using methanol/n-hexane at near miscible conditions in the presence...
ANALYTICAL EXPRESSIONS FOR LIQUID-COLUMN VELOCITIES IN PIPELINES WITH ENTRAPPED GAS
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2015-01-01)
High pressures and high temperatures may arise in pipelines when a liquid column is suddenly accelerated into a gas pocket trapped at a closed end. A mass oscillation occurs that is described by nonlinear equations for both liquid and gas. Analytical expressions are derived for the uniform velocity of the liquid column, from which pressures and gas temperatures follow. The obtained results are validated against theoretical and experimental results published by fellow researchers.
Oil entrainment in vertical refrigerant piping
Kesim, SC; Albayrak, Kahraman; Ileri, A (2000-12-01)
The aim of this study is to investigate the required refrigerant speed, hence minimum refrigeration load, for carrying the lubricating oil up in vertical sections of refrigerant lines. It is assumed that the downward flow of the thin oil layer over the inner surface of the riser due to gravity is to be balanced with the upward flow of the oil film due to the shear force created by the upward flow of the refrigerant vapor. Velocities are converted to refrigeration capacities by considering a saturated cycle ...
Diffusion in Hypersonic Flows
Gür, Hilmi Berk; Eyi, Sinan (Nova Science Pub Inc, 2020-10-01)
In hypersonic flows, air goes into chemical reaction due to high temperature. Therefore, in addition to the Navier-Stokes Equations, chemical reaction equations need to be solved to analyze hypersonic flows. A model may be need to simulate the diffusion phenomena among chemical species. It is possible to implement Fick's Law of Diffusion as well as Stefan-Maxwell Diffusion Equation. Basically, in Fick's Law of Diffusion, the driving force is the species concentration differences. This method is similar to t...
Citation Formats
H. Calisgan, B. Demiral, and S. Akın, “Near-critical gas/condensate relative permeability of carbonates,” 2006, vol. 1, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33745728092&origin=inward.