Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling of blood flow in arteies with Navier-Stokes equations
Date
2018-05-12
Author
Kaya Merdan, Songül
Metadata
Show full item record
Item Usage Stats
58
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/72448
Conference Name
5th International Conference on Complex Dynamical Systems in Life sciences Modeling and Analysis, (2018)
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
MODELING OF DYNAMIC DELAMINATION IN L-SHAPED COMPOSITE BRACKETS
Gozluklu, Burak; Çöker, Demirkan (2012-11-15)
One of the widely used geometrically complex parts in recent civil passenger aircrafts is the L-shaped composite brackets connecting ribs to skins. Due to the sharp curved geometry, interlaminar opening stresses are induced and delamination occurs under considerable mode-mixities at the corner. Dynamic phenomena during delamination initiation and propagation of L-shaped beams are investigated using dynamic (explicit) finite element analysis in conjunction with cohesive zone methods (CZM). In ABAQUS a sequen...
Modeling of flow in a polymeric chromatographic monolith
Koku, Harun; Czymmek, Kirk J.; Schure, Mark R.; Lenhoff, Abraham M. (Elsevier BV, 2011-06-03)
The flow behavior of a commercial polymeric monolith was investigated by direct numerical simulations employing the lattice-Boltzmann (LB) methodology. An explicit structural representation of the monolith was obtained by serial sectioning of a portion of the monolith and imaging by scanning electron microscopy. After image processing, the three-dimensional structure of a sample block with dimensions of 17.8 mu m x 17.8 mu m x 14.1 mu m was obtained, with uniform 18.5 nm voxel size. Flow was simulated on th...
Modeling of surge and swab pressure of yield power law fluids
Erge, Öner; Akın, Serhat; Gücüyener, İsmail Hakkı; Department of Petroleum and Natural Gas Engineering (2016)
A mathematical modeling work and computational fluid dynamics (CFD) analysis of surge and swab pressures in concentric annuli is conducted. A commercial CFD package is used to validate the developed model of the flow during surge and swab in concentric annuli. Developed mathematical model incorporates the Yield Power Law (YPL) fluid behavior for closed-end pipes under laminar flow conditions. The results of the mathematical model and CFD analysis is compared with the models from literature. CFD analysis is ...
MODELING OF EVAPORATION FROM A SESSILE CONSTANT SHAPE DROPLET
Akkus, Yigit; ÇETİN, BARBAROS; Dursunkaya, Zafer (2017-08-30)
In this study, a computational model for the evaporation from a sessile liquid droplet fed from the center to keep the diameter of the droplet constant is presented. The continuity, momentum and energy equations are solved with temperature dependent thenno-physical properties using COMSOL Multi-physics. At the surface of the droplet, convective heat and evaporative mass fluxes are assigned. Since the flow field is affected by evaporative flux, an iterative scheme is built and the computation is automated us...
Modeling of dispersion in a polymeric chromatographic monolith
Koku, Harun; Schure, Mark R.; Lenhoff, Abraham M. (Elsevier BV, 2012-05-11)
Dispersion in a commercial polymeric monolith was simulated on a sample geometry obtained by direct imaging using high-resolution electron microscopy. A parallelized random walk algorithm, implemented using a velocity field obtained previously by the lattice-Boltzmann method, was used to model mass transfer. Both point particles and probes of finite size were studied. Dispersion simulations with point particles using periodic boundaries resulted in plate heights that varied almost linearly with flow rate, a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Kaya Merdan, “Modeling of blood flow in arteies with Navier-Stokes equations,” presented at the 5th International Conference on Complex Dynamical Systems in Life sciences Modeling and Analysis, (2018), Aveiro, Portugal, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/72448.