Numerical Analysis of Silicon Heterojunction Solar Cell Based on Molybdenum Oxide as a Back Surface Field (BSF)

2017-09-01
Mehmood, Haris
Turan, Raşit

Suggestions

Numerical analysis ofdopant-freeasymmetric silicon heterostructure solar cell withSiO(2)as passivation layer
Mehmood, Haris; Nasser, Hisham; Tauqeer, Tauseef; Turan, Raşit (Wiley, 2020-08-01)
Conventional silicon heterojunction solar cells employ defects-prone a-Si:H layers for junction formation and passivation purposes. Substituting these layers with hole-selective MoO(x)and electron-selective TiO(x)can reduce parasitic absorption and energy band offsets issues associated with doped silicon films. In this work, dopant-free asymmetric heterostructure Si solar cells are studied with and without SiO(2)passivation layer, and their performance has been compared. The inclusion of ultrathin SiO(2)ins...
Numerical analysis of convective heat transfer of nanofluids in circular ducts with two-phase mixture model approach
Sert, İsmail Ozan; Sezer Uzol, Nilay (2016-09-01)
Computational fluid dynamics simulations for initially hydro-dynamically fully developed laminar flow with nanofluids in a circular duct under constant wall temperature condition are performed with two-phase mixture model by using Fluent software. Thermal behaviors of the system are investigated for constant wall temperature condition for Al2O3/water nanofluid. Hamilton–Crosser model and the Brownian motion effect are used for the thermal conductivity model of nanofluid instead of the Fluent default model f...
NUMERICAL ANALYSIS OF A SOLAR ORGANIC RANKINE CYCLE (ORC) UNIT WITH R245FA AS WORKING FLUID
Bamgbopa, Musbaudeen O.; Uzgoren, Eray (2012-07-26)
This paper presents a solar Organic Rankine Cycle (ORC) for electricity generation; where a regression based approach is used for the working fluid. Models of the unit's sub-components (pump, evaporator, expander and condenser) are also presented. Heat supplied by the solar field can heat the water up to 80-95 degrees C at mass flow rates of 2-12 kg/s and deliver energy to the ORC's heat exchanger unit. Simulation results of steady state operation using the developed model shows a maximum power output of ar...
NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE
Kirez, Oguz; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (2012-11-15)
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are prese...
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Citation Formats
H. Mehmood and R. Turan, “Numerical Analysis of Silicon Heterojunction Solar Cell Based on Molybdenum Oxide as a Back Surface Field (BSF),” 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/72780.