Mathematical Modeling of a Bubbling FBC Co fired with Lignite and Biomass

2008-05-01
Külah, Görkem
Selçuk, N

Suggestions

Mathematical Modeling of a Bubbling Fluidized Bed Combustor Cofired with Lignite and Biomass
Külah, Görkem; Selçuk, Nevin (2010-01-01)
A comprehensive system model of fluidized bed combustor, previously developed and tested for the prediction of combustion behavior of fluidized bed combustors fired with lignite was extended for the modeling of cofiring of lignite with biomass by incorporating volatile release, char combustion, and population balance for biomass. The model predictions were validated against measurements taken on a Middle East Technical University 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor fired with lignite only, ...
Mathematical modeling of a bubbling fluidized bed combustor co-fired with cotton residue and lignite
Yaşar, Mehmet Soner; Külah, Görkem; Selçuk, Nevin; Department of Chemical Engineering (2018)
A comprehensive system model, previously developed for prediction of combustion behaviors of Turkish lignites, lignite/hazelnut shell and lignite/olive residue blends in fluidized bed combustors, is extended for modeling of co-combustion of Turkish lignite and cotton residue in a bubbling fluidized bed combustor. Cotton residue has high nitrogen content (~ 4.1 wt. % a.r.) unlike lignite (~ 0.9 wt. % a.r.), olive residue (~ 1.6 wt. % a.r.) and hazelnut shell (~ 0.5 wt. % a.r.), which leads to relatively high...
Mathematical modeling of nox emissions in bubbling fluidized bed combustors
Afacan, M. Onur; Selçuk, Nevin; Department of Chemical Engineering (2005)
A comprehensive model, previously developed and tested for prediction of behavior of continuous fluidized bed combustors is extended to incorporate NOx formation and reduction reactions and applied to the simulation of METU 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) burning lignites with high volatile matter in their own ashes. The predictive accuracy of the model was assessed by comparing its predictions with measurements taken previously on the same rig. Favorable comparisons are obtaine...
Mathematical modeling of FBC'a co-fired with lignite and biomass
Moralı, Ekrem Mehmet; Selçuk, Nevin; Department of Chemical Engineering (2007)
Increasing environmental legislations on pollutant emissions originated from fossil fuel combustion and intention of increasing the life of existing fossil fuels give rise to the use of renewable sources. Biomass at this juncture, with its renewable nature and lower pollutant emission levels becomes an attractive energy resource. However, only seasonal availability of biomass and operation problems caused by high alkaline content of biomass ash restrict its combustion alone. These problems can be overcome b...
Mathematical modeling of swelling in high moisture whey protein gels
Öztop, Halil Mecit (Elsevier BV, 2011-09-01)
Gels prepared from whey proteins can be used for controlled release of nutrients or active ingredients in food systems. The objective of this study was to characterize the water uptake by these hydrophilic gels to aid in the design of release systems. Whey protein isolate (WPI) gels (17% w/w protein) of different aspect ratios were submersed in aqueous solution at pH 7.0. Modeling of mass uptake is presented in terms of Case I (Fickian diffusion) and Case II (kinetic) models. Due to the extent of swelling, ...
Citation Formats
G. Külah and N. Selçuk, “Mathematical Modeling of a Bubbling FBC Co fired with Lignite and Biomass,” 2008, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73034.