Molecular Dynamic Simulation Study of Mechanical Behavior of Fe-B Amorphous Nanowires

2014-09-11

Suggestions

Molecular Dynamic Simulations of Pristine and Defective Graphene Nanoribbons Under Strain
Tuzun, Burcu; Erkoç, Şakir (American Scientific Publishers, 2013-02-01)
Structural properties of pristine and defective graphene nanoribbons have been investigated by stretching them under 5 percent and 10 percent uniaxial strain until the nanoribbons fracture. The stretching process have been carried out by performing molecular dynamics simulations at 1 K and 300 K to determine the temperature effect on the structure of the graphene nanoribbons. Results of the simulations indicated that the conformation of the initial graphene nanoribbon model, temperature, and stretching spee...
Molecular-dynamics simulation of stepped Si(100) surface
Katırcıoğlu, Şenay; Salman, SA; Erkoc, S (2000-07-01)
We have investigated the relaxation of single and double layer stepped Si(100) surfaces depending on working cell size and heat treatment by MD simulation based on LJ-AT empirical potential energy function. It is found that smooth relaxation can be satisfied for both types of stepped Si(100) surfaces by continuous MD runs. The dependence of relaxation on the size of working cell is found only for single layer stepped Si(100) surface. The total potential energy calculation by MD shows that double layer Si(10...
Molecular-dynamics computer simulation of pure metals and metal alloys
Uludoğan, Mustafa; Tomak, Mehmet; Department of Physics (1996)
Molecular-dynamics simulations of surface and bulk properties of Zn, Cd, and ZnCd systems
Amirouche, L; Erkoç, Şakir (Wiley, 2004-02-01)
Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated by performing molecular-dynamics simulations using a recently developed empirical many-body potential energy function for these systems, which comprices two- and three-body atomic interactions. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively. (C) 2004 WILEY-VCH Verlag Gm...
Molecular-dynamics computer simulation of pure metal and liquid metal alloy
Biber, Alper; Tomak, Mehmet; Department of Physics (1997)
Citation Formats
M. Yalçın, A. Mehrabov, and M. V. Akdeniz, “Molecular Dynamic Simulation Study of Mechanical Behavior of Fe-B Amorphous Nanowires,” 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/73746.