Vehicle wind noise prediction through solutions of Navier-Stokes and Ffowcs Williams Hawkings equations

Gümüş, Baran
Güneş, Ezgi
Özyörük, Yusuf
The aim of this study is to calculate flow noise of a car model at a far field location. Aeroacoustic calculations for non-reduced models require excessive computing source. Ffowcs Williams and Hawkings (FWH) method is one of the most effective methods of Computational Aero Acoustics (CAA) in terms of computational cost. The FWH method is a hybrid method, which consists of a near field flow solution and then a linear acoustic propagation to far field. Acoustic sources around the vehicle must be captured accurately. A detailed, unsteady turbulent flow simulation is required due to the nature of noise generation mechanisms. The sound generated by such sources is propagated to far field using FWH integral equations that are implemented in a FORTRAN code. The results are compared with a wind tunnel test.


Steering dynamics of tracked vehicles
Özdemir, Mehmet Nuri; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2016)
The main objective of this thesis study is the development of a general transient steering model for tracked vehicles which is simple, accurate, and simulation results are in agreement with test results to a satisfactory level. For modeling Matlab/Simulink platform is utilized. The model represents a general tracked vehicle having rear or front sprockets, with variable centre of gravity and wheel positions, and number of wheels. The vehicle hull is modelled as a rigid body having 3 degree of freedom; transl...
Aerothermodynamic Design Optimization of Hypersonic Vehicles
Eyi, Sinan; Boyd, Iain D. (American Institute of Aeronautics and Astronautics (AIAA), 2019-04-01)
The objective of this study is to develop a reliable and efficient design optimization method for hypersonic vehicles focused on aerothermodynamic environments. Considering the nature of hypersonic flight, a high-fidelity aerothermodynamic analysis code is used for the simulation of weakly ionized hypersonic flows in thermochemical nonequilibrium. A gradient-based method is implemented for optimization. Bezier or nonuniform rational basis spline curves are used to parametrize the geometry or the geometry ch...
Aerodynamic Analyses of Thick Wind Turbine Airfoils for High Reynolds Numbers
ASLAN, EZGİ; Orbay Akcengiz, Ezgi; Sezer Uzol, Nilay (2021-09-08)
In this study, Computational Fluid Dynamics simulations of flow around thick have been performed. Thick airfoils are generally preferred in wind turbine blades for structural and aerodynamic performances. High Reynolds flows around thick airfoils are one of the challenging problems in wind turbine blade design due to turbulent, separated and complex flow field characteristics. In the CFD analyses, both 2-D RANS simulation approach on structured computational grids is considered. Grid sensitivity study is al...
Implementation of rotation into a 2-d euler solver
Özdemir, Enver Doruk; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2005)
The aim of this study is to simulate the unsteady flow around rotating or oscillating airfoils. This will help to understand the rotor aerodynamics, which is essential in turbines and propellers. In this study, a pre-existing Euler solver with finite volume method that is developed in the Mechanical Engineering Department of Middle East Technical University (METU) is improved. This structured pre-existing code was developed for 2-D internal flows with Lax-Wendroff scheme. The improvement consist of firstly,...
Hypersonic Flow Analysis of Re-entry Vehicles Using Three Dimensional Navier-Stokes Equations
Özgün, Muharrem; Eyi, Sinan (2015-07-27)
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence model is used to analyze hypersonic turbulent flow and the one-equation Spalart-Allmaras turbulence model will be implemented ...
Citation Formats
B. Gümüş, E. Güneş, and Y. Özyörük, “Vehicle wind noise prediction through solutions of Navier-Stokes and Ffowcs Williams Hawkings equations,” presented at the 9th Ankara International Aerospace Conference (2017), Ankara, Türkiye, 2017, Accessed: 00, 2021. [Online]. Available: