Validation of Local Crystal Plasticity Models in Micro-Scale Deformation of Aluminum

2019-06-26
Efe, Mert
Yalçınkaya, Tuncay
Şimşek, Ülke
Güler, Baran

Suggestions

Validation of depth-averaged mixing length turbulence model for uniform channel flows/
Karaman, Çağrı Hasan; Aydın, İsmail; Department of Civil Engineering (2014)
A one-dimensional depth averaged turbulence model based on volumetric mixing length definition is developed for shallow flows. Numerical solution of the model is done using finite volume method for steady, uniform closed duct flows to observe lateral momentum exchange over depth discontinuities. The model is verified by comparison to two-dimensional numerical solutions and to the experimental data available in the literature. The model is then applied to uniform free surface flows in rectangular and compoun...
Verification of empirically determined support systems of the Kılıçlar highway tunnel by numerical modelling
Çelik, Gözde; Topal, Tamer; Department of Geological Engineering (2011)
The aim of this study is to determine the geological and geotechnical characteristics of Kılıçlar Tunnel on Ankara-Kırıkkale Highway, to suggest the appropriate support and excavation systems and verify these suggested support systems via numerical modeling. The length of Kılıçlar Tunnel is 1110 m. The width of tunnel is 16 m, the height is 10 m and the maximum overburden height is 90 m. Since Ankara-Kırıkkale Highway consists of 2x3 lanes, the tunnel is designed as a twin tube tunnel. Kılıçlar Tunnel is pl...
Validation of MISES 2 D Boundary Layer Code for High Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (2007-01-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage, and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed which can be executed quickly for each of many operating conditions, and on each of several design sections which will accurately capture loss, turning and loading. This paper presents the validation of a boundary ...
Verification of Modular Diagnosability With Local Specifications for Discrete-Event Systems
Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2013-09-01)
In this paper, we study the diagnosability verification for modular discrete-event systems (DESs), i.e., DESs that are composed of multiple components. We focus on a particular modular architecture, where each fault in the system must be uniquely identified by the modular component where it occurs and solely based on event observations of that component. Hence, all diagnostic computations for faults to be detected in this architecture can be performed locally on the respective modular component, and the obt...
Validation of 3D finite element solution for laterally loaded passive piles
Ekici, A.; Huvaj Sarıhan, Nejan (2014-06-20)
Three full scale field experiments reported by De Beer&Wallays (1972) and Esu&D'Elia (1974) have been modeled using 3D finite element method with PLAXIS 3D. Shear box models were established to eliminate the effect of site geometries and slope angles which were not reported in these cases. Lateral movement of an unstable soil and loading of passive piles were generated by prescribed horizontal surface displacements in the upper half of the shear box model. Measured field values of pile deflection, bending m...
Citation Formats
M. Efe, T. Yalçınkaya, Ü. Şimşek, and B. Güler, “Validation of Local Crystal Plasticity Models in Micro-Scale Deformation of Aluminum,” 2019, vol. 1, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/74404.