Modeling and Transient Simulations of 30 MW Solar Thermal Electric Power Plants in the Northeast Mediterranean Region

2015-01-01
Bilyaz, Serhat
Singh, Rahul
Karshenass, Arash
Baker, Derek Keıth
The annual performance of a parabolic trough collector (PTC) concentrating solar power (CSP) system without storage or backup is predicted for Antalya (Turkey) and Güzelyurt and Larnaca on the island of Cyprus by modeling the system with TRNSYS software. The model is established to be similar to the 30 MWe CSP plant (SEGS VI) in Kramer Junction, California. The model is benchmarked with published results for Kramer Junction and Antalya, and good agreement is found. Based on irradiation maps, Güzelyurt is expected to be one of the sunniest areas on Cyprus, but hourly meteorological data are not supplied with TRNSYS for this location. Meteorological data in TMY2 format are available in TRNSYS for Larnaca. In this work, TMY2 data for Güzelyurt is created using Meteonorm software. The investigation of the performance of a CSP plant for these two locations on the island of Cyprus is one of the main objectives of this paper. The annual performance of these systems is predicted by performing simulations using an hourly time step. Results for typical clear and cloudy days are compared for the three locations. The highest monthly average net power outputs are observed for Güzelyurt. Finally, the capacity factor of the CSP plant is investigated for different solar multiples for a solar-only PTC plant without hybridization or thermal storage for all three locations. Results show that maximum power outputs are obtained for Güzelyurt. For our solar-only system, solar multiples of 1.1–1.3 have good results, but for solar multiples greater than 1.3, an excess amount of solar resources starts to be wasted, so that storage is recommended especially for Güzelyurt.
Citation Formats
S. Bilyaz, R. Singh, A. Karshenass, and D. K. Baker, Modeling and Transient Simulations of 30 MW Solar Thermal Electric Power Plants in the Northeast Mediterranean Region. 2015, p. 1114.