Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Manufacture of a Fuel Cell Powered Unmanned Air Vehicle
Date
2010-06-12
Author
Güleç, Emre
Tekelioğlu, Semih
Solmaz, Mehmet Burak
Sezer Uzol, Nilay
Kaynak, Ünver
Metadata
Show full item record
Item Usage Stats
18
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/75317
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Design and manufacturing of a solar powered unmanned air vehicle
Özcan, Servet Güçlü; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2015)
The aim of this thesis is to describe the conceptual design, performance analysis including solar energy collection and manufacturing process of a solar powered unmanned aerial vehicle (UAV) and validate the design through ground and flight tests. Through a literature survey of solar powered aircraft, main design requirements are chosen. The solar powered UAV designed for this study is a small scale aircraft and intended to be used simply and frequently by end-users. Therefore it is designed as a flying win...
Design and manufacturing of a quad tilt rotor unmanned air vehicle
Kahvecioğlu, Ahmet Caner; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2014)
This thesis presents the design and manufacturing process of a mini class quad tilt rotor unmanned air vehicle (UAV). An optimal design procedure is conducted to satisfy a set of pre-determined requirements, which ensure a competitive aircraft platform performing primarily intelligence, surveillance and reconnaissance missions in UAV market. The aircraft has four electric motors with tilting capability in one axis, which gives it the opportunity to combine the vertical take-off and landing capabilities with...
Design and manufacturing of a tactical unmanned air vehicle
Şenelt, Engin; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2010)
The aim of this study is to describe the conceptual design, performance analysis to validate the design and manufacturing steps of Middle East Technical University Tactical Unmanned Air Vehicle (METU TUAV). The system requirements are adopted from a market study and assumed as is. Utilizing competitor search and conceptual design methodology, the rough parameters of the aircraft are defined and a performance analysis is conducted to validate the requirements. After the design team is content that the design...
Design and Manufacturing of a High Speed Jet Powered UAV
Ozyetis, Ender; Alemdaroglu, Nafiz (2014-05-30)
This paper presents the design and manufacturing of a high speed jet powered UAV which is capable of flying at M=0.5. Flight time of the UAV is 30 minutes at 1700 m above sea level. Aerodynamic and structural design of the UAV is conducted for 6g sustained and 9g instantaneous loads. Low aspect ratio blended wing-body design is decided due to low drag and high maneuverability. Structure of the UAV consists of the composite parts such as frames and skin and mechanical parts such as landing gears which are fr...
Design and manufacture of a low temperature hydrogen-oxygen alkaline fuel cell
Ergul, Mustafa Tanzer; Eroğlu, İnci; Türker, Lemi; Department of Chemical Engineering (1995)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Güleç, S. Tekelioğlu, M. B. Solmaz, N. Sezer Uzol, and Ü. Kaynak, “Design and Manufacture of a Fuel Cell Powered Unmanned Air Vehicle,” 2010, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75317.