Efficient Big Integer Multiplication in Cryptography

İlter, Murat Burhan
Cenk, Murat
journal of information security


Efficient Big Integer Multiplication in Cryptography
İlter, Murat Burhan; Cenk, Murat (2017-10-30)
Efficient interleaved Montgomery modular multiplication for lattice-based cryptography
AKLEYLEK, SEDAT; Tok, Zaliha Yuce (2014-01-01)
In this paper, we give modified version of interleaved Montgomery modular multiplication method for lattice-based cryptography. With the proposed algorithms, we improve the multiplication complexity and embed the conversion operation into the algorithm with almost free cost. We implement the proposed methods for the quotient ring (Z/qZ)[x]/(x(n) - 1) and (Z/pZ)[x]/(x(n) + 1) on the GPU (NVIDIA Quadro 600) using the CUDA platform. NTRUEncrypt is accelerated approximately 35% on the GPU by using the proposed ...
AYKANAT, C; OZGU, O; Güven, Ali Nezih (1994-01-01)
Efficient subquadratic space complexity binary polynomial multipliers based on block recombination
Cenk, Murat; Negre, Christophe (2014-09-01)
Some applications like cryptography involve a large number of multiplications of binary polynomial. In this paper we consider two, three and four-way methods for parallel implementation of binary polynomial multiplication. We propose optimized three and four-way split formulas which reduce the space and time complexity of the best known methods. Moreover, we present a block recombination method which provides some further reduction in the space complexity of the considered two, three and four-way split mult...
Efficient Multilayer Iterative Solutions of Electromagnetic Problems Using Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-01-01)
We consider efficient iterative solutions of large-scale electromagnetic problems involving metallic objects. For fast iterative solutions, a multilayer scheme using approximate forms of the multilevel fast multipole algorithm is developed. The approach is based on preconditioning each layer with iterative solutions at a lower layer, while the accuracy is changed from the top layer to the bottom layer. As opposed to the conventionally used algebraic preconditioners, the multilayer scheme: 1) does not requir...
Citation Formats
M. B. İlter and M. Cenk, “Efficient Big Integer Multiplication in Cryptography,” journal of information security, pp. 0–0, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/75405.