Numerical Approaches for Convective Heat Transfer with Nanofluids

2016-01-01
Sert, Ozan
Sezer Uzol, Nilay
Kakaç, Sadık

Suggestions

Numerical studies of the electronic properties of low dimensional semiconductor heterostructures
Dikmen, Bora; Tomak, Mehmet; Department of Physics (2004)
An efficient numerical method for solving Schrödinger's and Poisson's equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well wit...
Numerical modeling and analyses of anisotropic diffusion and stresses in polymer electrolyte fuel cell
Mehrtash, Mehdi; Tarı, İlker; Department of Mechanical Engineering (2017)
A two dimensional, half-cell, non-isothermal, multi-phase model of a polymer electrolyte fuel cell (PEFC) is developed. The model accounts for the acting clamping force on the cell with accompanying effects on gas transport properties and contact resistances. Spatial variations of anisotropic structural and physical properties of gas diffusion layers (GDLs) in both in-plane and through-plane directions are considered. The developed mechanistic model is validated by comparıng its results with the experimenta...
Numerical Analysis of Nanofluids Convective Heat Transfer with Euler Euler and Mixture Model Approaches
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2014-06-13)
Forced convection heat transfer characteristics of Al2O3/water nanofluid are investigated numerically by using mixture model two-phase flow approach with Fluent software. The initially hydro-dynamically fully developed laminar nanofluid flow simulations are performed with different nanoparticle volume fractions. The effects of thermal conductivity and viscosity models on heat transfer enhancements are carried out for constant heat flux boundary condition. As a result, the heat transfer coefficient results o...
Numerical modelling of spatio-temporal patterns in a DC-driven gas discharge-semiconductor system
Özden, Gözde; Rafatov, İsmail; Karasözen, Bülent; Department of Scientific Computing (2015)
In this thesis, numerical modelling of temporal and spatial pattern formation in the planar layered system, consisted of a DC driven planar gas discharge layer, coupled to high ohmic semiconductor layer, is carried out in 1D and 2D Cartesian geometry. Numerical model includes continuity equations for ions and electrons, the Poisson equation for the electric field, the energy balance equation for the background gas. The conditions correspond to a transition from the Townsend regime to the glow discharge. Cal...
Numerical analysis of formation of hexagonal and band structures in the gas discharge - semiconductor system
Rafatov, İsmail (2015-09-01)
The spontaneous formation of regular hexagonal and band structures in the current distribution of the gas discharge – semiconductor system is studied. The system consists of a planar glow discharge layer with short length in the forward direction and wide lateral dimensions, which is coupled to a planar semiconductor layer with low conductivity. The whole structure is sandwiched between two plane electrodes to which a dc voltage is applied. The choice of input parameters is guided by the experimental study ...
Citation Formats
O. Sert, N. Sezer Uzol, and S. Kakaç, Numerical Approaches for Convective Heat Transfer with Nanofluids. 2016, p. 205.