Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Micromechanical Aspects of Amorphous Plasticity Through a Strain Gradient Crystal Plasticity Framework
Date
2019-08-22
Author
Demirci, Aytekin
Yalçınkaya, Tuncay
Sandfeld, Stefan
Metadata
Show full item record
Item Usage Stats
111
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/76203
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Micromechanical Properties of Marginal Glass Forming Alloys
Kalay, İlkay; Uluca, Tolga Han; Özerinç, Sezer; Kalay, Yunus Eren (2021-02-23)
Micromechanical cohesive zone relations for ductile fracture
Yalçınkaya, Tuncay (Elsevier BV; 2016-06-24)
This paper addresses the derivation of a micromechanically motivated incremental mixed-mode traction separation law in the context of cohesive zone modeling of crack propagation in ductile metallic materials. The formulation is based on the growth of an array of pores idealized as cylinders which are considered as the representative volume elements. An upper bound solution is applied for the deformation of the representative volume element and different incremental traction-separation relations are obtained...
Micromechanical characterization of metallic glass — crystalline nanocomposite coatings
Abboud, Mohammad; Özerinç, Sezer; Kalay, Yunus Eren; Department of Micro and Nanotechnology (2018)
Amorphous/crystalline nanolayers provide an effective model system to study the mechanical behavior and size effects of metallic glasses and crystalline metals in confined geometries. They also provide an advantageous structure for improving the ductility of amorphous metals while maintaining their outstanding strength. Combination of high strength and ductility make these nanocomposites promising materials as wear resistant coatings. The structure-property relationship in Amorphous/Crystalline nanolayers c...
Micromechanical modelling and two scale simulation of epoxy glass composites with interphases and interfaces
Fleischhauer, Robert; Dal, Hüsnü; Kaliske, Michael (2010-03-26)
Composite systems consisting of glass fibres and epoxy matrix with interphases and interfaces will be considered in the modelling approach. The interphase forms the transition zone between the epoxy matrix and the glass fibre. The interface is the layer between the glass fibre and the surrounding interphase. The macroscopic strength of the composite material is intrinsically related to the bond strength of the polymeric/solid interface and the micromechanical characteristics of the three phases (epoxy, glas...
Micromechanical Characterization of Additively Manufactured Ti-6Al-4V Parts Produced by Electron Beam Melting
Özerinç, Sezer; KAŞ, MUSTAFA; Motallebzadeh, Amir; Nesli, Safak; Duygulu, Ozgur; YILMAZ, OĞUZHAN (2021-08-01)
Ti-6Al-4V is one of the most promising alloys for electron beam melting (EBM) of structural parts due to its outstanding properties and its extensive use in the aerospace, automotive, and energy industries. In this study, we report a detailed and systematic micromechanical characterization of additively manufactured Ti-6Al-4V parts produced via EBM. The specimens were characterized by microhardness, nanoindentation, micropillar compression, and microscratch measurements. The results show that the Ti-6Al-4V ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Demirci, T. Yalçınkaya, and S. Sandfeld, “Micromechanical Aspects of Amorphous Plasticity Through a Strain Gradient Crystal Plasticity Framework,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76203.