Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Kanat Isıtmasının Düşük Ok Açılı Delta Kanat Üzerindeki Akış Yapısına Etkisi
Date
2017-09-16
Author
Şencan, Gizem
Güvenç Yazıcıoğlu, Almıla
Yavuz, Mehmet Metin
Metadata
Show full item record
Item Usage Stats
45
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/76676
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Effect of wing heating on flow structure of low swept delta wing
Şencan, Gizem; Yavuz, Mehmet Metin; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2016)
Micro Air Vehicles (MAVs), Unmanned Air Vehicles (UAVs) and Unmanned Combat Air Vehicles (UCAVs), which can be represented by simplified planforms including low swept delta wings, have many advantages in defense industry and aeronautical field. Thus, the aerodynamics of nonslender delta wings including development and application of different flow control techniques have been of considerable interest in recent years. In this study, it is aimed to investigate the effect of heating on the flow structure over...
Investigation of effects of bird strike problem on wing leading edge by using explicit finite element method
Dede, Oğuzhan; Kayran, Altan; Department of Aerospace Engineering (2015)
In aviation industry, bird strike problem causes structural damage and threats to flight safety. Nowadays, designed and produced aircraft have to satisfy “safe flight and landing” requirements. The behavior of the aircraft components during bird strike have be to investigated by numerical methods or experiments. Results obtained from numerical analysis and /or experiments have to be carefully studied to optimize the aircraft structures. However, experiments of bird strike are very costly and require qualifi...
A deep learning methodology for the flow field prediction around airfoils
Duru, Cihat; Baran, Özgür Uğraş; Alemdar, Hande; Department of Mechanical Engineering (2021-9-07)
This study aims to predict flow fields around airfoils using a deep learning methodology based on an encoder-decoder convolutional neural network. Neural network training and evaluation are performed from a set of computational fluid dynamics (CFD) solutions of the 2-D flow field around a group of known airfoils at a wide range of angles of attack. Reynolds averaged Navier-Stokes (RANS)-based CFD simulations are performed at a selected Mach number on the transonic regime on high-quality structured computati...
Use of detached eddy simulation for aerodynamics and aeroacoustics of blade sections
Cengiz, Kenan; Özyörük, Yusuf; Department of Aerospace Engineering (2018)
Investigation of noise generation mechanisms due to turbulence necessitates resolution of eddies in space and time. Among the broad-band noise simulation tools, direct numerical simulation (DNS) is the most comprehensive one. However, it is prohibitively expensive. At the other extreme, unsteady Reynolds-averaged Navier-Stokes (URANS) based solvers, which are widely used in industry, can merely be reliable for attached flows. Besides, the inherent time-averaging procedure destroys the unsteadiness of eddies...
Experimental investigation of the effects of tip geometry on the flow and loss characteristics in a linear turbine cascade
Alican, Ozan; Uzol, Oğuz; Department of Aerospace Engineering (2017)
In gas turbines, there are a number of factors causing efficiency decrease. When internal flow in turbomachines is considered, flow vortices are one of those factors. This study aims to investigate the main mechanisms behind the efficiency losses occurring due to Tip Leakage Vortex (TLV) in gas turbine rotor blades. Additionally, according to these mechanisms, two squealer tip geometries were applied to the turbine blades and the improvements were reported. This work is the experimental branch of an optimum...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Şencan, A. Güvenç Yazıcıoğlu, and M. M. Yavuz, “Kanat Isıtmasının Düşük Ok Açılı Delta Kanat Üzerindeki Akış Yapısına Etkisi,” 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76676.