Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Control of a Helicopter during Autorotation
Date
2018-11-01
Author
Şansal, Kaan
Konukseven, Erhan İlhan
Nalbantoğlu, Volkan
Metadata
Show full item record
Item Usage Stats
108
views
0
downloads
Cite This
URI
http://www.arf2018.org/downloads.asp
https://hdl.handle.net/11511/77128
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Control of a helicopter during autorotation
Şansal, Kaan; Konukseven, Erhan İlhan; Nalbantoğlu, Volkan; Department of Mechanical Engineering (2018)
Autorotation is a maneuver that requires no power and it is used in rotorcrafts when last operating engine is lost. It is an extremely complex state of flight and landing successfully after total power loss requires considerable skill. Main idea behind autorotation is that, by descending with a controlled rate, available potential energy is used as a source that turns main rotor at desired speed for providing thrust and flight control. Just before touchdown, ground speed and descent rate must be reduced for...
Control of a satellite with flexible smart beam during slew maneuver
Ürek, Halime; Tekinalp, Ozan; Department of Aerospace Engineering (2011)
In this thesis, an attitude control system based on Linear Quadratic Regulator (LQR) technique is developed for a hypothetical Earth observation satellite with a long flexible boom. To improve pointing performance of the satellite, the piezoelectric actuators are used as well. The boom is rectangular made of aluminum with the surface bonded piezoelectric layers on all four surfaces. The boom is modeled using finite elements. The pointing performance of the satellite using various metrics is evaluated throug...
Control and guidance of an unmanned sea surface vehicle
Ahıska, Kenan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2012)
In this thesis, control and guidance algorithms for unmanned sea surface vehicles are studied. To design control algorithms of different complexity, first a mathematical model for an unmanned sea surface vehicle is derived. The dynamical and kinematical equations for a sea surface vehicle are obtained, and they are adapted to real life conditions with necessary additions and simplifications. The forces and torques effecting on the vehicle are investigated in detail. Control algorithms for under-actuated six...
Control of BLDC Motor in Presence of Static Rotor Eccentricity
Shakouhi, S. Mohammad; Mohamadian, Mustafa; Afjei, S. Ebrahim (2011-09-10)
BLDC motors are one of the motor types rapidly gaining popularity. In recent years various researches have been done in the field of motor fault detection and fault tolerant control. However, in the case of rotor problems, especially rotor eccentricity tolerant control a few papers have been presented. Since in sensitive industries, continuous operation with good performance till the maintenance time is very important, operating in the desired condition in presence of this kind of fault is really advantageo...
Control of an underactuated system around a periodic orbit
Duyul, Ayşe Deniz; Alatan, Abdullah Aydın; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2018)
Quasi-periodic behavior is one of the most important fundamental building blocks for locomotion in biological (and robotic) systems. The dynamics that govern the motion of such behaviors are generally highly nonlinear and underactuated. One method of analyzing the quasi-periodic behaviors of such systems is to linearize the system around these periodic trajectories. Such a linearization provides us a linear time periodic (LTP) system around the neighborhood of the periodic orbit. Analysis and control of LTP...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Şansal, E. İ. Konukseven, and V. Nalbantoğlu, “Control of a Helicopter during Autorotation,” 2018, Accessed: 00, 2021. [Online]. Available: http://www.arf2018.org/downloads.asp.