Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Introducing Upper Critical Solution Temperature to Polymer Multilayer Films
Date
2016-07-21
Author
Ustoglu, Cansu
Çağlı, Eda
Erel Göktepe, İrem
Metadata
Show full item record
Item Usage Stats
46
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/78972
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Employing Dynamic Body-Bias for Short Circuit Power Reduction in SRAMs
Mert, Yakup Murat; Simsek, Osman Seckin (2015-03-04)
Dynamic body-biasing is a well studied approach for reducing the leakage power in memory systems. Proposed designs dynamically change the body bias of the inactive memory cells in order to tune their threshold voltages. However, prior body biasing schemes only focus on the static power reduction and overlook the power dissipation stemmed from the short circuit current. Recent studies showed that the neglected short circuit power became significant fraction of the overall power consumption in CMOS circuits. ...
Introduction of solid-phase microextraction as a high-throughput sample preparation tool in laboratory analysis of prohibited substances
Boyacı, Ezel; Rodriguez-Lafuente, Angel; Bojko, Barbara; Pawliszyn, Janusz (Elsevier BV, 2014-01-27)
A fully automated, high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography-mass spectrometry was developed for simultaneous quantitative analysis of 110 doping compounds, selected from ten classes and varying in physical and chemical properties. Among four tested extraction phases, C18 blades were chosen, as they provided optimum recoveries and the lowest carryover effect. The SPME method was optimized in terms of extraction pH, ionic strength of the sample, wa...
Introduction of Si/SiO2 interface states by annealing Ge-implanted films
Marstein, ES; Gunnaes, AE; Olsen, A; Finstad, TG; Turan, Raşit; Serincan, U (AIP Publishing, 2004-10-15)
Nanocrystals embedded in SiO2 films are the subject of a number of recent works, mainly because of their potential usefulness in the fabrication of optoelectronic devices and nanocrystal memory structures. One interesting method for the fabrication of such nanocrystals is the ion implantation of segregating species into SiO2 films followed by heat treatment in order to induce nanocrystal formation. This method is both relatively simple and also compatible with the current MOS (metal-oxide-semiconductor) dev...
Applying "era" technique to the cost functions containing trigonometric potentials
Ayesh, Ghassan; Güler, Marifi; Department of Computer Engineering (1995)
Using high pressure microfluidization to improve physical properties and lycopene content of ketchup type products
Mert, Behiç (Elsevier BV, 2012-04-01)
This study evaluates the effects of high pressure microfluidization of ketchup mixes on the physical properties and lycopene content. During the processing the pressure level ranged between 200 and 2000 bar, while the number of passes was kept constant. When the treatment pressure was increased from 200 to 1200 bar, the yield stress, elastic modulus, storage modulus. and Bostwick consistency values of the ketchup samples improved. However, over-processing was observed for the samples treated at 1600 and 200...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Ustoglu, E. Çağlı, and İ. Erel Göktepe, “Introducing Upper Critical Solution Temperature to Polymer Multilayer Films,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/78972.