Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Metasurface Filters for Terahertz Applications Design Fabrication and Characterization
Date
2016-09-23
Author
Altan, Hakan
Akkaya, Merve
Demirhan, Yasemin
Alaboz, Hakan
Özyüzer, Lütfi
Sabah, Cumali
Metadata
Show full item record
Item Usage Stats
64
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/79404
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Metasurface Lens for Ultra-Wideband Planar Antenna
Yesilyurt, Omer; Sayan, Gönül (Institute of Electrical and Electronics Engineers (IEEE), 2020-02-01)
In this article, an ultra-wideband metasurface lens is designed and integrated into an antipodal Vivaldi antenna (AVA) to improve its radiation directivity without affecting its efficiency and return loss characteristics. The metasurface lens consists of high permittivity metamaterial unit cells which resonate at frequencies far away from the operation bandwidth of 1-6 GHz. Electric field distributions of the antennas show that the near-field behaves more planar for the metasurface lens loaded AVA, as compa...
Metamaterial absorber-based multisensor applications using a meander-line resonator
AKGÖL, OĞUZHAN; ALTINTAŞ, OLCAY; Dalkilinc, Elif Eda; ÜNAL, EMİN; KARAASLAN, MUHARREM; Sabah, Cumali (2017-08-01)
A metamaterial (MTM) absorber-based multifunctional sensor is numerically and experimentally realized using meander-line resonators. The proposed sensor device can be used to measure pressure, density, and humidity with perfect signal absorption characteristics at the frequency range of X band. The structure consists of a sensor layer sandwiched between two dielectric slabs. The sensor layer is used to detect unknown environmental parameters with respect to the electromagnetic responses of the material unde...
Metamaterial Absorber Based Multifunctional Sensors
Sabah, Cumali (The Electrochemical Society, 2016-01-01)
In this paper, several important applications of a metamaterial absorber (MA) based sensors such as temperature, pressure, moisture, and density are presented. Since the sensing ability mostly considers the resonance frequency, the frequency range where the resonance shifts occur linearly or non-linearly depending on the temperature, pressure, moisture, and density changes is selected carefully. The model is composed of X shaped resonators (XSR), dielectric substrate, the sensing layer, dielectric substrate...
Metamaterial absorber-based sensor embedded into X-band waveguide
SABAH, CUMALİ; TURKMEN-KUCUKSARİ, OZNUR; Sayan, Gönül (Institution of Engineering and Technology (IET), 2014-07-17)
A novel metamaterial sensor, integrated with an X-band waveguide, is proposed for high-resolution measurements of variations in the dielectric constant and/or the thickness of a superstrate layer that covers a pair of absorber unit cells. Variations in superstrate parameters are potentially caused by physical, chemical or biological factors, and can be detected by measuring the corresponding shifts in the resonance frequency of the metamaterial sensor. It is estimated by simulation results that resolution l...
Metamaterial Sensor Applications Based on Broadside Coupled SRR and V Shaped Resonator Structures
EKMEKÇİ, EVREN; Sayan, Gönül (2011-07-08)
In this study, the use of broadside-coupled SRR (BC-SRR) metamaterial topology is suggested for pressure, temperature, humidity and concentration sensor applications. Also, the use of V-shaped resonator topology is suggested for pressure sensor application. The feasibility of such sensors are demonstrated by numerical simulations for microwave region under magnetic excitation.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Altan, M. Akkaya, Y. Demirhan, H. Alaboz, L. Özyüzer, and C. Sabah, “Metasurface Filters for Terahertz Applications Design Fabrication and Characterization,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79404.