Narrowband and Wideband Direction-of-Arrival Estimation For Uniform And Nonuniform Linear Arrays

2009-02-01
Nonuniform linear arrays (NLAs) have certain advantages and problems for directions of arrival (DOA) estimation. They cover a large array aperture with fewer sensors, and they require fewer matched channels or receivers. Their disadvantage is that coherent sources cannot be easily handled. Furthermore, they need additional computation to compensate for and augment the missing sensor information. The completion of missing sensor data is required to improve accuracy. Array mapping is an effective method of augmenting the NLA covariance matrix. Array-mapping accuracy can be improved significantly if an initial DOA estimate is used and then the estimates are improved iteratively. For this reason, initial DOA estimation is a key problem for NLA, but it can be easily solved for uncorrelated sources. Toeplitz completion can be used directly for this purpose. Initial DOA estimation for coherent sources is not an easy task. A promising approach for coherent signals is to use partly filled NLA. Initial DOA estimates can be obtained via forward-backward spatial smoothing for the ULA part of this array. Then, array mapping can generate a covariance matrix corresponding to a full array with the same aperture. Different array-mapping techniques exist in the literature. Classical array interpolation is well known, but it has certain limitations. Wiener array interpolation performs well, but it produces focusing loss for NLA. It performs better for circular arrays compared to alternative techniques where a large angular sector for array mapping is used.

Suggestions

Direction of arrival estimation for nonuniform linear arrays by using array interpolation
Tuncer, Temel Engin; Friedlander, B. (2007-07-03)
[1] A new approach is proposed for DOA estimation in nonuniform linear arrays (NLA) based on array interpolation. A Wiener formulation is presented to improve the condition number of the mapping matrix as well as the performance for noisy observations. Noniterative and iterative methods for DOA estimation are proposed. These methods use an initial DOA which is then significantly improved by the subsequent processing. Partially augmentable nonredundant arrays (PANA) and partly filled NLA (PFNLA) are consider...
PARALLEL MULTILEVEL FAST MULTIPOLE ALGORITHM FOR COMPLEX PLASMONIC METAMATERIAL STRUCTURES
Ergül, Özgür Salih (2013-11-09)
A parallel implementation of the multilevel fast multipole algorithm (MLFMA) is developed for fast and accurate solutions of electromagnetics problems involving complex plasmonic metamaterial structures. Composite objects that consist of multiple penetrable regions, such as dielectric, lossy, and plasmonic parts, are formulated rigorously with surface integral equations and solved iteratively via MLFMA. Using the hierarchical strategy for the parallelization, the developed implementation is capable of simul...
Frequency estimation of a single real-valued sinusoid: An invariant function approach
Candan, Çağatay; Çelebi, Utku (2021-08-01)
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results ind...
Nonlinear Seismic Dam and Foundation Analysis Using Explicit Newmark Integration Method with Static Condensation
Albostan, Utku; Bahcecioglu, Tunc; Arıcı, Yalın; Kurç, Özgür (Elsevier BV; 2017-09-13)
Engineers use the explicit Newmark integration method to analyze nonlinear dynamic problems. Instead of using computationally expensive global matrix assembly and factorization, the explicit integration method performs computations at element level which is computationally efficient, easily parallelizable, and does not require equilibrium iterations in case of nonlinear analysis. On the other hand, the explicit schema might require much smaller time steps compared to implicit integration alternative especia...
Broadband Multilevel Fast Multipole Algorithm Based on an Approximate Diagonalization of the Green's Function
Ergül, Özgür Salih (2015-07-01)
We present a broadband multilevel fast multipole algorithm (MLFMA) for fast and efficient solutions of three-dimensional multiscale problems involving large objects with dense discretizations. The proposed solver is based on the approximate diagonalization of the Green's function using scaled spherical and plane waves, leading to stable interaction computations for arbitrarily short distances in terms of wavelength. Despite contradictory requirements on the scaling factor that limit the accuracy of the diag...
Citation Formats
T. E. Tuncer, Narrowband and Wideband Direction-of-Arrival Estimation For Uniform And Nonuniform Linear Arrays. 2009.