Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Computationally efficient shape analysis via level sets
Date
1996-01-01
Author
Tari, ZEHRA SİBEL
Shah, Jayant
Pien, Homer
Metadata
Show full item record
Item Usage Stats
0
views
0
downloads
In recent years, curve evolution has been applied to smoothing of shapes and shape analysis with considerable success, especially in biomedical image analysis. The multiscale analysis provides information regarding parts of shapes, their axes or centers and shape skeletons. In this paper, we show that the level sets of an edge-strength function provide essentially the same shape analysis as provided by curve evolution. The new method has several advantages over the method of curve evolution. Since the governing equation is linear, the implementation is simpler and faster. The same equation applies to problems of higher dimension. An important advantage is that unlike the method of curve evolution, the new method is applicable to shapes which may have junctions such as triple points. The edge-strength may be calculated from raw images without first extracting the shape outline. Thus the method can be applied to raw images. The method provides a way to approach the segmentation problem and shape analysis within a common integrated framework.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0029695562&origin=inward
https://hdl.handle.net/11511/79815
Collections
Unverified, Article