An Efficient Domain Cascading Approach for Linear Discontinuous Galerkin Schemes

2018-04-09
Doğan, Doğanay
Kuzuoğlu, Mustafa
A discontinuous Galerkin finite element method based domain decomposition technique is presented for solving Maxwell's Equations. The method can be implemented with either time domain or frequency domain solutions for sub-domains. The problem in each sub domain is solved using open boundaries. A connection in frequency domain is then established between the solved outward and inward fluxes of the sub-domains touching each other. No field continuity is imposed giving the technique high computational efficiency due to the lack of Schwarz iterations. The sub-domains are cascaded in a non-iterative manner. The methods' core elements are verified by comparing them to commercial solvers using a two-element antenna problem and a periodic boundary problem in 2D space. © Institution of Engineering and Technology.All Rights Reserved.
12th European Conference on Antennas and Propagation, EuCAP (2018)

Suggestions

Development of discontinuous galerkin method 2 dimensional flow solver
Güngör, Osman; Özgen, Serkan; Department of Aerospace Engineering (2019)
In this work, 2 dimensional flow solutions of Euler equations are presented from the developed discontinuous Galerkin method finite element method (DGFEM) solver on unstructured grids. Euler equations govern the inviscid and adiabatic flows with a set of hyperbolic equations. The discretization of governing equations for DGFEM is given in detail. The DGFEM discretization provides high order solutions on an element-compact stencil hence only elements having common boundary are coupled. The required elementwise ...
Reduced order optimal control of the convective FitzHugh-Nagumo equations
Karasözen, Bülent; KÜÇÜKSEYHAN, TUĞBA (2020-02-15)
In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consist of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The ...
Moving mesh discontinuous Galerkin methods for PDEs with traveling waves
UZUNCA, MURAT; Karasözen, Bülent; Kucukseyhan, T. (2017-01-01)
In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the effi...
Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Average Vector Field Splitting Method for Nonlinear Schrodinger Equation
Akkoyunlu, Canan; Karasözen, Bülent (2012-05-02)
The energy preserving average vector field integrator is applied to one and two dimensional Schrodinger equations with symmetric split-step method. The numerical results confirm the long-term preservation of the Hamiltonians, which is essential in simulating periodic waves.
Citation Formats
D. Doğan and M. Kuzuoğlu, “An Efficient Domain Cascading Approach for Linear Discontinuous Galerkin Schemes,” London; United Kingdom, 2018, vol. 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80191.