Microscale and Nanoscale Heat Transfer Analysis Design and Application

2016-01-01

Suggestions

Nanoscale active tuning of the second harmonic generation efficiency in semiconductors from super-low to gigantic values
Asirim, Ozum Emre; Kuzuoğlu, Mustafa (2022-08-01)
Second harmonic generation efficiency (SHGE) strongly depends on the length of the interaction material along the beam propagation axis. Since a nanoscale interaction length is considered too short even in the optical wavelength scale, the attained SHGE through nanomaterials is usually too low to be of practical use. In this study, it will be shown that by properly adjusting the conduction-band electron density in a semiconductor nanomaterial under a certain optical pumping rate (active tuning), the SHGE ca...
Nanostructured High Entropy Alloys with High Strength
Tarman, Gökhan; Köhnetarfun, M. Yiğit; Motallebzadeh, Amir; Özerinç, Sezer (2021-06-10)
Nanocrystal silicon based visible light emitting pin diodes
Anutgan, Mustafa; Katırcıoğlu, Bayram; Department of Physics (2010)
The production of low cost, large area display systems requires a light emitting material compatible with the standard silicon (Si) based complementary metal oxide semiconductor (CMOS) technology. The crystalline bulk Si is an indirect band semiconductor with very poor optical properties. On the other hand, hydrogenated amorphous Si (a-Si:H) based wide gap alloys exhibit strong visible photoluminescence (PL) at room temperature, owing to the release of the momentum conservation law. Still, the electrolumine...
Nanoscale Structure and Structural Relaxation in Zr50Cu45Al5 Bulk Metallic Glass
HWANG, Jinwoo; MELGAREJO, Z. H.; Kalay, Yunus Eren; KALAY, I.; KRAMER, M. J.; STONE, D. S.; VOYLES, P. M. (2012-05-11)
Hybrid reverse Monte Carlo simulations of the structure of Zr50Cu45Al5 bulk metallic glass incorporating medium-range structure from fluctuation electron microscopy data and short-range structure from an embedded atom potential produce structures with significant fractions of icosahedral- and crystal-like atomic clusters. Similar clusters group together into nanometer-scale regions, and relaxation transforms crystal-like clusters into icosahedral clusters. A model refined against only the potential does not...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
Aurang, Pantea; Es, Fırat; Turan, Raşit; Ünalan, Hüsnü Emrah (null; 2015-11-29)
Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to inc...
Citation Formats
S. Özerinç and A. Güvenç Yazıcıoğlu, “Microscale and Nanoscale Heat Transfer Analysis Design and Application,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80199.