Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Identifying quasi equally informative subsets in multi objective feature selection problems for classification
Date
2016-07-06
Author
Karakaya, Gülşah
Ahipaşaoğlu, Selin Damla
Taormina, Riccardo
Metadata
Show full item record
Item Usage Stats
57
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/80990
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Identifying (Quasi) Equally Informative Subsets in Feature Selection Problems for Classification: A Max-Relevance Min-Redundancy Approach
Karakaya, Gülşah; AHİPAŞAOĞLU, Selin Damla; TAORMİNA, Riccardo (2016-06-01)
An emerging trend in feature selection is the development of two-objective algorithms that analyze the tradeoff between the number of features and the classification performance of the model built with these features. Since these two objectives are conflicting, a typical result stands in a set of Pareto-efficient subsets, each having a different cardinality and a corresponding discriminating power. However, this approach overlooks the fact that, for a given cardinality, there can be several subsets with sim...
Identifying Stability Properties of a Hybrid Spring–Mass–Damper via Piecewise LTI Approximation and Harmonic Transfer Functions
Uyanık, İsmail; Ankaralı, Mustafa Mert; Cowan, Noah; Morgül, Ömer; Saranlı, Uluç (null; 2015-07-24)
Identifying preferred solutions in multiobjective combinatorial optimization problems
Lokman, Banu (2019-01-01)
We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary algorithm works well in approximating the solutions in the...
Finding a representative nondominated set for multi-objective mixed integer programs
Ceyhan, Gokhan; Koksalan, Murat; Lokman, Banu (2019-01-01)
In this paper, we develop algorithms to find small representative sets of nondominated points that are well spread over the nondominated frontiers for multi-objective mixed integer programs. We evaluate the quality of representations of the sets by a Tchebycheff distance-based coverage gap measure. The first algorithm aims to substantially improve the computational efficiency of an existing algorithm that is designed to continue generating new points until the decision maker (DM) finds the generated set sat...
Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs
Karakaya, Gülşah; Köksalan, M. (2023-07-01)
Many interactive approaches in multi-objective optimization assume the existence of an underlying preference function that represents the preferences of a decision maker (DM). In this paper, we develop the theory and an exact algorithm that guarantees finding the most preferred solution of a DM whose preferences are consistent with a Tchebycheff function for multi-objective integer programs. The algorithm occasionally presents pairs of solutions to the DM and asks which one is preferred. It utilizes the pre...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Karakaya, S. D. Ahipaşaoğlu, and R. Taormina, “Identifying quasi equally informative subsets in multi objective feature selection problems for classification,” 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/80990.