MHD Convection Flow in a Constricted Channel



MHD convection flow in a constricted channel
We consider the steady, laminar, convection flow in a long channel of 2D rectangular constricted cross-section under the influence of an applied magnetic field. The Navier-Stokes equations including Lorentz and buoyancy forces are coupled with the temperature equation and are solved by using linear radial basis function (RBF) approximations in terms of the velocity, pressure and the temperature of the fluid. RBFs are used in the approximation of the particular solution which becomes also the approximate sol...
MHD natural convection flow in a porous cavity
Bozkaya, Canan (null; 2018-09-13)
A numerical investigation of natural convection flow in a cavity filled with a fluid-saturated porous medium in the presence of uniform magnetic field is performed. The steady, viscous, incompressible flow inside the porous medium is assumed to obey the Darcy law. The fluid physical properties are constant except the density in the body force term which is treated according to Boussinesq approximation. The fluid and porous medium are in thermal equilibrium. The governing equations subject to appropriate bou...
MHD Stokes flow in lid-driven cavity and backward-facing step channel
Gurbuz, Merve; Tezer, Münevver (River Publishers, 2015-01-01)
The 2D Magnetohydrodynamics Stokes flow equations are solved in a lid-driven cavity and backward-facing step channel in the presence of a uniform magnetic field with different orientations. The hydrodynamic and electromagnetic equations are solved simultaneously using Stokes approximation in terms of velocity, pressure, stream function and vorticity with an iterative procedure. The radial basis function approximations are used to terms other than diffusion satisfying the boundary conditions at the same time...
MHD mixed convection flow in a lid-driven cavity involving a solid body
Bozkaya, Canan (2018-08-09)
MHD flow in a rectangular duct with a perturbed boundary
Fendoglu, Hande; Bozkaya, Canan; Tezer, Münevver (Elsevier BV, 2019-01-15)
The unsteady magnetohydrodynamic (MHD) flow of a viscous, incompressible and electrically conducting fluid in a rectangular duct with a perturbed boundary, is investigated. A small boundary perturbation e is applied on the upper wall of the duct which is encountered in the visualization of the blood flow in constricted arteries. The MHD equations which are coupled in the velocity and the induced magnetic field are solved with no-slip velocity conditions and by taking the side walls as insulated and the Hart...
Citation Formats
M. Tezer, “MHD Convection Flow in a Constricted Channel,” 2016, Accessed: 00, 2021. [Online]. Available: