Magnetic resonance current density imaging

2006-01-01
Encyclopedia of Biomedical Engineering

Suggestions

Magnetic resonance imaging of polymer melt flows
Uludağ, Yusuf; Powell, RL; Barall, G (2000-01-01)
A tubular rheometry that is based on obtaining velocity profiles by nuclear magnetic resonance imaging (NMRI) and measuring pressure drop of the flow is used for the polymer melts. This technique allows one to get viscosity data potentially over many decades of shear rate region in a single measurement. In this study, we examined polyethylene melt as the flow medium. Despite the low shear rates attained, our results reveal that this non-invasive and non-destructive method is promising for constructing an on...
Magnetic resonance electrical impedance tomography based on MRI-SPAMM
Sümser, Kemal; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2016)
Electrical conductivity of biological tissues differs among different kinds of tissues. Information about measured impedance of a tissue gives great deal of information about pathological state of the tissue and some biomedical applications requires this information. Magnetic Resonance Current Density Imaging (MRCDI) and Magnetic Resonance Electrical Impedance Tomography (MREIT) are two imaging modalities which investigates current and conductivity distribution inside objects by utilizing the magnetic flux ...
Magnetic Resonance Signal Analysis in Inhomogenous Magnetic Fields
Arpinar, V. E.; Eyüboğlu, Behçet Murat (2009-09-12)
Nuclear Magnetic Resonance (NMR) systems with inhomogenous main magnetic fields have been satisfactorily used to explore material properties. So that, imaging of biological tissues using Magnetic Resonance Imaging (MRI) systems with inhomogenous main magnetic fields could be explored. In this work, magnetic resonance (MR) signal deviation due to inhomogeneity in the main magnetic field of a MRI system is investigated. This analysis gives the understanding of the effect of inhomogeneity in magnetic field to ...
Magnetic Resonance Electrical Impedance Tomography For Anisotropic Conductivity Imaging
Degirmenci, E.; Eyüboğlu, Behçet Murat (2008-11-27)
Magnetic Resonance Electrical Impedance Tomography (MREIT) brings high resolution imaging of true conductivity distribution to reality. MREIT images are reconstructed based on measurements of current density distribution and a surface potential value, induced by an externally applied current flow. Since biological tissues may be anisotropic, isotropic conductivity assumption, as it is adopted in most of MREIT reconstruction algorithms, introduces reconstruction inaccuracy. In this study, a novel algorithm i...
Magnetic Resonance Temperature Mapping of Microwave-Fried Chicken Fingers
Barutcu, Isil; Mccarthy, Michael J.; Seo, Young-Seob; Şahin, Serpil (Wiley, 2009-06-01)
The main objective of this study was to compare the heating patterns of chicken fingers deep-fried conventionally and using a microwave. Two dimensional internal temperature maps of fried chicken fingers with rectangular geometry were measured post frying using magnetic resonance imaging (MRI). Frying was performed in a microwave oven at 365 W power level for 0.5 and 1.5 min after bringing the oil temperature to 180 +/- 1 degrees C. Samples were also fried in a conventional fryer at 180 degrees C for 2 and ...
Citation Formats
B. M. Eyüboğlu, “Magnetic resonance current density imaging,” Encyclopedia of Biomedical Engineering, pp. 2147–2153, 2006, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/82697.