Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of fretting fatigue failure mechanism of lug-bush connection members
Date
2019-01-01
Author
Ozen, Emine Burcin
Korkmaz, Yezdan
Çöker, Demirkan
Metadata
Show full item record
Item Usage Stats
161
views
0
downloads
Cite This
URI
https://linkinghub.elsevier.com/retrieve/pii/S2452321619305785
https://hdl.handle.net/11511/83211
Journal
Procedia Structural Integrity
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Investigation of fretting fatigue failure mechanism of lug-bush connection members
Özen, Emine Burçin; Çöker, Demirkan (Elsevier BV; 2019-01-01)
Lug-bush connection members are widely used in aerospace industry, specifically in the connection of rotor to helicopter main body. Under small amplitude cyclic loadings, a fraction of the contact area experiences relative motion which causes fretting on the contacting surfaces. In this study, failure mechanisms of four different lug-bush members subjected to high cycle tensile fatigue loading are investigated. The contact surfaces are inspected using a digital microscope and a scanning electron microscope ...
Investigation of mechanical property changes after MIG welding of (7XXX) series aluminum alloys
Okay, Sena; Ögel, Bilgehan; Batıgün, Caner; Department of Metallurgical and Materials Engineering (2016)
There is an increasing demand for aluminum alloys not only in aerospace industry but also in automotive industry due to its low density. Welding is the most effective and commonly used joining technique in those industries, therefore, aluminum welding plays an important role. 7039 aluminum alloy, is a high strength alloy and it is suitable for armor applications. Like other aluminum alloys, after MIG welding, remarkable decrease in strength is observed and therefore applications are restricted. The aim of t...
INVESTIGATION OF FATIGUE CRACK BEHAVIOR ON NEAR THRESHOLD REGION OF AISI 4340 STEELS FOR DIFFERENT HEAT TREATMENT CONDITIONS
Çalışkan, Salim; Gürbüz, Rıza; Department of Metallurgical and Materials Engineering (2023-1-27)
Damage tolerant approach is an important phenomenon in engineering practice and must be evaluated at the onset of the design stage for components that are subject to cyclic loading during functioning; if not, devastating fatigue failure may occur. Inaccurate assessments in allowable fatigue data can cause substantial variation in fatigue limit evaluation for components with small crack size. Determining long crack threshold value as a design criterion is not a new research topic; even so, some anomalies ari...
Investigation of tensile plastic instability and necking for AL2024T3 aluminum and S235JR steel alloys
İli, Volkan; Darendeliler, Haluk; Department of Mechanical Engineering (2019)
Tensile plastic instability phenomenon is defined as the mode of deformation so that large amounts of deformation is localized in a certain region of a component during product life or testing procedure. Several studies have been published to assess the methods proposed to predict tensile plastic instability and necking behavior of materials. Although research has been done by using various specimens, comparative results on different specimen materials and geometries as well as different test methods have n...
Investigation of the effect of orientation and heat treatment on the stress corrosion cracking susceptibility of 7050 aluminium alloy
Çevik, Gül; Doruk, Mustafa; Department of Metallurgical and Materials Engineering (2004)
In the present work, the effect of variation in specimen orientation and heat treatment on the Stress Corrosion Cracking (SCC) susceptibility of 7050 aluminum alloy was investigated in 3,5% NaCl solution and under freely corroding conditions. For this purpose, Constant Extension Rate Tests (CERT) was performed on precracked Compact Tension (CT) specimens and the Direct Current Potential Drop technique was applied to measure the crack lengths. In addition to crack length versus time curves, the relationship ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. B. Ozen, Y. Korkmaz, and D. Çöker, “Investigation of fretting fatigue failure mechanism of lug-bush connection members,”
Procedia Structural Integrity
, pp. 215–223, 2019, Accessed: 00, 2021. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2452321619305785.