Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
3D cellular alignment enhance asc myogenesis for skeletal muscle tissue engineering
Date
2017-09-04
Author
Ergene, Emre
Sezlev Bilecen, Deniz
Ermiş Şen, Menekşe
Huri, Pınar
Hasırcı, Vasıf Nejat
Metadata
Show full item record
Item Usage Stats
86
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/83313
Conference Name
28th Annual Conference of the European Society for Biomaterials (ESB 2017) (4 - 08 Eylül 2017)
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
3D spatial organization and network-guided comparison of mutation profiles in glioblastoma
Dinçer, Cansu; Tunçbağ, Nurcan; Department of Bioinformatics (2019)
Glioblastoma multiforme (GBM) is the most aggressive and heterogeneous type of brain tumor. The heterogeneity of GBM is the main obstacle to develop effective treatment strategies. In this study, we aimed to decrease the heterogeneity among GBM patients from The Cancer Genome Atlas (TCGA), classify the patients and propose therapeutic hypothesis for patient groups by using patient mutation profiles. We therefore implemented a systems level approach to mutations using their biophysical characteristics and or...
3D spatial organization and network-guided comparison of mutation profiles in Glioblastoma reveals similarities across patients
Dincer, Cansu; Kaya, Tugba; Keskin, Ozlem; Gursoy, Attila; Tunçbağ, Nurcan (2019-09-01)
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor. Molecular heterogeneity is a hallmark of GBM tumors that is a barrier in developing treatment strategies. In this study, we used the nonsynonymous mutations of GBM tumors deposited in The Cancer Genome Atlas (TCGA) and applied a systems level approach based on biophysical characteristics of mutations and their organization in patient-specific subnetworks to reduce inter-patient heterogeneity and to gain potential clinically relevant i...
3D Porous Composite Scaffold of PCL-PEG-PCL/Sr2+ and Mg2+ Ions Co-Doped Borate Hydroxyapatite for Bone Tissue Engineering
Yedekçi, Buşra; Evis, Zafer; Tezcaner, Ayşen; Department of Engineering Sciences (2021-9-6)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped hydroxyapatite (HA) that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HAs were s...
3D marker tracking for human gait analysis
Küçük, Can; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2005)
This thesis focuses on 3D marker tracking for human gait analysis. In KISS Gait Analysis System at METU, a subject's gait is recorded with 6 cameras while 13 reflective markers are attached at appropriate locations on his/her legs and feet. These images are processed to extract 2 dimensional (2D) coordinates of the markers in each camera. The 3 dimensional (3D) coordinates of the markers are obtained by processing the 2D coordinates of the markers with linearization and calibration algorithms. Then 3D traje...
3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution
Simsir, Caner; Gür, Cemil Hakan (Elsevier BV, 2008-10-16)
During quench hardening of steel components, obtaining the desired distribution of microstructure and residual stresses with minimum distortion is essential in order to achieve production goals and reliable service performance. In this study, a 3D FEM based model, which is integrated into commercial FEA software Msc.Marc (R) via user subroutines, has been developed to predict temperature history, evolution of microstructure and internal stresses during quenching. For experimental verification, eccentrically...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ergene, D. Sezlev Bilecen, M. Ermiş Şen, P. Huri, and V. N. Hasırcı, “3D cellular alignment enhance asc myogenesis for skeletal muscle tissue engineering,” presented at the 28th Annual Conference of the European Society for Biomaterials (ESB 2017) (4 - 08 Eylül 2017), 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/83313.