Spinodal instabilities and properties of unstable modes in asymmetric nuclear matter

2015-08-30
Saatci, Selen
Çakırça, Fatma
Yılmaz, Osman
Ayık, S
Gökalp, Ahmet

Suggestions

Spinodal instabilities in symmetric nuclear matter within a density-dependent relativistic mean-field approach
Danışman, Betül; Yılmaz, Osman; Department of Physics (2011)
The nuclear matter liquid-gas phase transition is expected to be a signal of nuclear spinodal instabilities as a result of density fluctuations. Nuclear spinodal instabilities in symmetric nuclear matter are studied within a stochastic relativistic density-dependent model in semi-classical approximation. We use two parameterization for the Lagrange density, DDME1 and TW sets. The early growth of density fluctuations is investigated by employing relativistic Vlasov equation based on QHD and discussed the clu...
Spinodal instabilities in symmetric nuclear matter within a nonlinear relativistic mean-field approach
Acar, Fatma; Yılmaz, Osman; Department of Physics (2011)
Spinodal instability mechanism and early development of density fluctuations for symmetric nuclear matter at finite temperature are studied. A stochastic extension of Walecka-type relativistic mean-field model including non-linear self-interactions of scalar mesons with NL3 parameter set is employed in the semi-classical approximation. The growth rates of unstable collective modes are investigated below the normal density and at low temperatures. The system exhibits most unstable behavior in longer wave len...
Spinodal instabilities in nuclear matter in a stochastic relativistic mean-field approach
Ayik, S.; Yılmaz Tüzün, Özgül; Er, N.; Gokalp, A.; Ring, P. (American Physical Society (APS), 2009-09-01)
Spinodal instabilities and early growth of baryon density fluctuations in symmetric nuclear matter are investigated in the basis of the stochastic extension of the relativistic mean-field approach in the semiclassical approximation. Calculations are compared with the results of nonrelativistic calculations based on Skyrme-type effective interactions under similar conditions. A qualitative difference appears in the unstable response of the system: the system exhibits most unstable behavior at higher baryon d...
Spinodal instabilities in asymmetric nuclear matter
Çakırça, Fatma; Yılmaz, Osman; Ayık, S (null; 2015-09-14)
Spin–orbit effects on the nonlinear optical properties of a quantum dot in simultaneous electric and magnetic fields
Aytekin, O.; Turgut, Sadi; Tomak, Mehmet (Elsevier BV, 2014-11)
We report on the nonlinear optical properties of a quantum dot including the Rashba spin-orbit interaction (RSOI) with external electric and magnetic fields. The effect of dot size is considered. We do not make any assumptions about the strength of the confinement. We use the numerical diagonalization of the Hamiltonian to determine the electronic structure. The confining potential is taken to be of the Woods-Saxon type. We find the effect of RSOI on nonlinear optical coefficients.
Citation Formats
S. Saatci, F. Çakırça, O. Yılmaz, S. Ayık, and A. Gökalp, “Spinodal instabilities and properties of unstable modes in asymmetric nuclear matter,” 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/83718.