Boron Doped Hydroxyapatite/Tricalcium Phosphate for Bone Tissue Engineering Applications

2019-10-20

Suggestions

Boron nitride/zinc doped hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering
Turhan, Emine Ayşe; Evis, Zafer; Tezcaner, Ayşen; Department of Micro and Nanotechnology (2021-3)
Bone diseases and disorders have been expected to increase mostly in time because of the aging, obesity and pysical activity problems. For this reason, bone tissue engineering has been focus point to design new biocompatible scaffolds and enhance bone tissue regeneration. Composite scaffolds composed of PCL, Zn doped hydoxyapatite (HA), and boron nitride nanofibers (BNNFs) were prepared by the rotary jet spinning for bone tissue engineering applications. Synthesis of BNNFs and Zn-HA was achieved by the free...
Boron-doped Biphasic Hydroxyapatite/beta-Tricalcium Phosphate for Bone Tissue Engineering
Pazarçeviren, Ahmet Engin; Tezcaner, Ayşen; Keskin, Dilek; Evis, Zafer (Springer Science and Business Media LLC, 2020-06-10)
Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 mu m) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 +/- 2.08% for 5BHT) and crystallite size (103.39 +/- 23.47 nm for 5BHT) and still, boron additi...
Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications
Turhan, Emine Ayşe; Akbaba, Sema; Tezcaner, Ayşen; Evis, Zafer (2023-05-01)
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of mela...
Boron doped hydroxyapatites in biomedical applications
Uysal, İdil; Yılmaz, Bengi; Evis, Zafer (2020-12-01)
Hydroxyapatite has been widely used in biomedical applications as a coatingmaterial for implant surfaces, a drug carrier, a scaffold or composite for bonetissue engineering applications. The highly ionic structure of hydroxyapatite allowsdoping of various ions, resulting in an improvement in its properties. Boron is oneof the elements which can be doped into hydroxyapatite structure by replacingphosphate (PO43-) or hydroxyl (OH-) sites to obtain scaffolds for bone tissueengineering applications or a coating...
Boron Modified Nano Bioactive Glass Incorporated Polymeric Microspheres for Hard Tissue Engineering
Moonesi Rad, Reza; Güldiken, Merve; Keskin, Dilek; Evis, Zafer; Şahin, Sıla; Tezcaner, Ayşen (2015-10-24)
Citation Formats
A. E. Pazarçeviren, D. Keskin, A. Tezcaner, and Z. Evis, “Boron Doped Hydroxyapatite/Tricalcium Phosphate for Bone Tissue Engineering Applications,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/83921.