Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Automatic Prior Shape Selection for Image Segmentation
Date
2015-01-01
Author
Guo, Weıhong
Qın, Jıng
Tarı, Zehra Sibel
Metadata
Show full item record
Item Usage Stats
118
views
0
downloads
Cite This
URI
http://www.springer.com/in/book/9783319163475
https://hdl.handle.net/11511/84168
Relation
RESEARCH IN SHAPE MODELING
Collections
Department of Computer Engineering, Book / Book chapter
Suggestions
OpenMETU
Core
Automatic Prior Shape Selection for Image Segmentation
Guo, Weihong; Qin, Jing; Tarı, Zehra Sibel (2013-07-01)
Segmenting images with occluded and missing intensity information is still a difficult task. Intensity based segmentation approaches often lead to wrong results. High vision prior information such as prior shape has been proven to be effective in solving this problem. Most existing shape prior approaches assume known prior shape and segmentation results rely on the selection of prior shape. In this paper, we study how to do simultaneous automatic prior shape selection and segmentation in a variational scheme.
Automatic relevance determination for the estimation of relevant features for object recognition
Ulusoy, İlkay (2006-01-01)
Object recognition from 2D images is a highly interesting problem. The final goal is to have a system which can recognize thousands of different categories like human beings do. However, hand labelling the 2D training images in order to segment the foreground (object) from the background is a very tedious job. Because of this reason, in recent years, intelligent systems which can learn object categories from unlabelled image sets have been introduced. In this case, an image is labelled by the objects which ...
Automatic semantic content extraction in videos using a spatio-temporal ontology model
Yıldırım, Yakup; Yazıcı, Adnan; Department of Computer Engineering (2009)
Recent increase in the use of video in many applications has revealed the need for extracting the content in videos. Raw data and low-level features alone are not sufficient to fulfill the user's need; that is, a deeper understanding of the content at the semantic level is required. Currently, manual techniques are being used to bridge the gap between low-level representative features and high-level semantic content, which are inefficient, subjective and costly in time and have limitations on querying capab...
Automatic saturation correction for dynamic range management algorithms
Artusi, Alessandro; POULİ, Tania; BANTERLE, Francesco; Akyüz, Ahmet Oğuz (2018-04-01)
High dynamic range (HDR) images require tone reproduction to match the range of values to the capabilities of a display. For computational reasons and given the absence of fully calibrated imagery, rudimentary color reproduction is often added as a post-processing step rather than integrated into tone reproduction algorithms. In the general case, this currently requires manual parameter tuning, and can be automated only for some global tone reproduction operators by inferring parameters from the tone curve....
Automatic Semantic Content Extraction in Videos Using a Fuzzy Ontology and Rule-Based Model
Yildirim, Yakup; Yazıcı, Adnan; Yilmaz, Turgay (2013-01-01)
Recent increase in the use of video-based applications has revealed the need for extracting the content in videos. Raw data and low-level features alone are not sufficient to fulfill the user's needs; that is, a deeper understanding of the content at the semantic level is required. Currently, manual techniques, which are inefficient, subjective and costly in time and limit the querying capabilities, are being used to bridge the gap between low-level representative features and high-level semantic content. H...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
W. Guo, J. Qın, and Z. S. Tarı,
Automatic Prior Shape Selection for Image Segmentation
. 2015, p. 8.