Ab initio Molecular Dynamics Characterization of La based Perovskite Type Oxides for Metal Air Cell Cathodes

2016-04-01
Afal Geniş, Ayşegül
Aydınol, Mehmet Kadri
Oxygen reduction reaction (ORR) catalytic activities have been of great scientific importance for extensive studies in energy storage technologies, specifically in metal-air batteries. Metal-air batteries are promising for future applications of especially electrical vehicles due to the utilization of oxygen from the air as one of the battery’s main components. Kinetic performance of the electrochemical reaction taking place in these batteries mainly depends on the reduction of oxygen at the cathode. Different groups of catalysts have been considered in order to facilitate ORR at the air electrodes including precious metal catalysts, metal oxides and carbons. Contrary to the ORR on metals and metal alloys in acidic environments, little is known about the influence of intrinsic properties of complex oxides on their activity toward the ORR in alkaline media. To develop novel and highly active cathode materials, a deeper understanding of the correlation between the cathode material properties and ORR activity is necessary. The crucial role of electronic structure in determining the electrochemical activity has been well recognized in the field of catalysis. First-principles computational studies, in particular density functional theory (DFT) studies, have made important contributions to such efforts, identifying fundamental correlations between catalytic activity and electronic structure for different types of catalyst materials. Therefore, ab initio methods become a useful tool to characterize catalytic properties by examining electronic structures, reaction energetics and activation energies. In this study, the effect of surface crystallography on oxygen molecule dissociation and adsorption properties on different types of transition metal perovskites of the type ABO3 (A=La, B= Mn, Cr, Fe, O=oxygen) are presented. To analyze the oxygen–perovskite interaction, ab initio molecular dynamics method is used to simulate the behavior of O2 at the surface. This method is expected to show whether the transition metal elements displayed an effect of catalyzer in terms of dissociation of the O2 molecule into O atoms at the surface. A systematical study within adsorption characteristics of oxygen on La-based perovskite surfaces was performed. In addition, via ab initio molecular dynamics simulations, what kind of an effect would different planes make on oxygen behavior at the surface was studied. Ab initio molecular dynamics simulations were executed on clean low- index (001) and (111) surfaces of perovskites. Simulations were done by ab initio pseudopotential method within the generalized gradient approximation (GGA) to density functional theory (DFT).
Materials Research Society Spring Meeting (28 Mart - 01 Nisan 2016)

Suggestions

Experimental investigation on the electrocatalytic behavior of Ag-based oxides, Ag2XO4 (X= Cr, Mo, W), for the oxygen reduction reaction in alkaline media
Hamat, Burcu Arslan; Aydınol, Mehmet Kadri (Elsevier BV, 2020-10-01)
The oxygen reduction (ORR) is one of the most essential electrochemical reactions for the development of promising energy storage and conservation technologies such as metal-air batteries and fuel cells. The slow kinetics of oxygen reactions; however, limits the use of metal-air batteries and fuel cells in demanding applications. The aim of this study is to investigate the electrochemical activity of Ag-based oxides, Ag2XO4 (where X = Cr, Mo, and W), to be used as a catalyst material in these applications. ...
Development and characterization of composite proton exchange membranes for fuel cell applications
Akay, Ramiz Gültekin; Baç, Nurcan; Department of Chemical Engineering (2008)
Intensive research on development of alternative low cost, high temperature membranes for proton exchange membrane (PEM) fuel cells is going on because of the well-known limitations of industry standard perfluoro-sulfonic acid (PFSA) membranes. To overcome these limitations such as the decrease in performance at high temperatures (>80 0C) and high cost, non-fluorinated aromatic hydrocarbon based polymers are attractive. The objective of this study is to develop alternative membranes that possess comparable ...
Modeling of reaction and degradation mechanisms in lithium-sulfur batteries
Erişen, Nisa; Külah, Görkem; Department of Chemical Engineering (2019)
Lithium-sulfur batteries are promising alternatives for the energy storage systems beyond Li-ion batteries due to their high theoretical specific energy (2567 Wh/kg) in addition to the natural abundancy, non-toxicity and low cost of sulfur. The reaction and degradation mechanisms in a Li-S battery include various electrochemical and precipitation/dissolution reactions of sulfur and polysulfides; however, the exact mechanism is still unclear. In this study, the effect of critical cathode design parameters su...
Electrochemical performance and modeling of lithium-sulfur batteries with varying carbon to sulfur ratios
Michaelis, Charles; Erisen, Nisa; PALA, DAMLA EROĞLU; Koenig, Gary M. (Wiley, 2019-02-01)
Lithium-sulfur batteries have attracted much research interest because of their high theoretical energy density and low-cost raw materials. While the electrodes are composed of readily available materials, the processes that occur within the cell are complex, and the electrochemical performance of these batteries is very sensitive to a number of cell processing parameters. Herein, a simple electrochemical model will be used to predict, with quantitative agreement, the electrochemical properties of lithium-s...
Steam Reforming of ethanol over sol-gel-synthesized mixed oxide catalysts
Olcay, Hakan Önder; Üner, Deniz; Department of Chemical Engineering (2005)
Depletion in the reserves of fossil fuels, inefficient energy production from these fuels and the negative effect of their usage on atmosphere, and thereby, on human health have accelerated researches on clean energy. Hydrogen produced from ethanol when used in fuel cells not only generates efficient energy but also creates a closed carbon cycle in nature. ZnO and Cu/ZnO catalysts are known with their superior performance in alcohol synthesis. From the principle of microkinetic reversibility they are expect...
Citation Formats
A. Afal Geniş and M. K. Aydınol, “Ab initio Molecular Dynamics Characterization of La based Perovskite Type Oxides for Metal Air Cell Cathodes,” presented at the Materials Research Society Spring Meeting (28 Mart - 01 Nisan 2016), Phoenix, AZ, Amerika Birleşik Devletleri, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84495.