Low Cycle Fatigue Effects in Integral Bridge Steel H-Piles under Seismic Displacement Reversals

2013-08-26

Suggestions

Low cycle fatigue effects in integral bridge steel H-piles under seismic displacement reversals
Dicleli, Murat (IOS Press, 2013-12-01)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study. For this purpose, IBs with two spans...
Low Cycle Fatigue Effects in Integral Bridge Steel H-Piles Under Earthquake Induced Strain Reversals
Dicleli, Murat (Springer, 2015-01-01)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements and ensuing bending strains in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study. For this...
Low Cycle Fatigue Effects in Integral Bridge Piles Under Seismic Load
Dicleli, Murat (2010-08-30)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study. For this purpose, IBs with two spans...
Low cycle fatigue performance of integral bridge steel H-piles subjected to earthquakes
Dicleli, Murat (2014-11-26)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study For this purpose, an IB with two span...
Low Cycle Fatigue Performance of Integral Bridge Steel H-Piles under Earthquake Induced Strain Reversals
Dicleli, Murat (null; 2014-12-22)
Citation Formats
M. Dicleli, “Low Cycle Fatigue Effects in Integral Bridge Steel H-Piles under Seismic Displacement Reversals,” 2013, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84748.