Development of tip Scanning High Speed AFM operating at 1 000 Lines s 15um

2016-03-18
Çelik, Umıt
Kehribar, Ihsan
Oral, Ahmet
High speed atomic force microscope allows imaging dynamic processes on the surfaces. We have developed a very high speed tip scanning atomic force microscope (HS-AFM). We designed the tip scanning system to overcome the sample size limits, with a beam tracking capability to follow the cantilever motion. A high resonance frequency flexure scanner developed which has 15m scan range in XY and 3m in Z axis. A novel FPGA based high speed scanning and data acquisition system was developed. The scanner is driven by sine wave in X-axis to avoid resonances and data were captured at equal sample intervals. 1 KHz line scan rate is achieved at 15m scan range with the HS-AFM.
American Physical Society, APS, March Meeting 2016, ( 14 - 18 Mart 2016)

Suggestions

Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Development of high fill factor and high performance uncooled infrared detector pixels
Küçük, Şeniz Esra; Akın, Tayfun; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 μm, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allo...
Development of resonant mass sensors for MEMS based real time cell detection applications
Kangül, Mustafa; Külah, Haluk; Department of Electrical and Electronics Engineering (2015)
This thesis represents design and implementation of MEMS based resonant mass sensors for cell detection applications. The main objective of the thesis is real-time detection inside liquid medium and obtaining the results by electronic means, without the assistance of bulky optical instruments. Novel resonant based mass sensor architectures that have various improvements over selected benchmark design are presented. Purpose of the new structures is to establish real-time mass detection by improving the quali...
Design and realization of a hybrid medical imaging system: harmonic motion microwave doppler imaging
Tafreshi, Azadeh Kamali; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2016)
Harmonic Motion Microwave Doppler Imaging (HMMDI) is a novel imaging modality to image electrical and mechanical properties of body tissues. This modality is recently proposed by the researchers in the METU EEE department for early-stage diagnosis of cancerous tissues. The main goal of this thesis study is to contribute various stages of the HMMDI's development processes. Speci cally, phantom development, dielectric and elastic characterization of the phantoms, experimental system realization, phantom exper...
New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT)
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (2001-02-22)
A novel MR-EIT imaging modality has been developed to reconstruct high-resolution conductivity images with true conductivity value. In this new technique, electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques are simultaneously used. Peripheral voltages are measured using EIT and magnetic flux density measurements are determined using MRI. The image reconstruction algorithm used is an iterative one, based on minimizing the difference between two current density distributions ...
Citation Formats
U. Çelik, I. Kehribar, and A. Oral, “Development of tip Scanning High Speed AFM operating at 1 000 Lines s 15um,” presented at the American Physical Society, APS, March Meeting 2016, ( 14 - 18 Mart 2016), Baltimore, ABD, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/85602.