Experimental investigation of turbulent flow through single-hole orifice placed in a pipe by means of time-resolvedparticle image velocimetry and unsteady pressure measurements

2016-07-04
Anantharaman, Vinod
Waterson, Nicholas
Nakiboglu, Gunes
Perçin, Mustafa
Van Oudheusden, Bas W.
The flow passing through a sharp-edged orifice is studied using two experimental techniques over a pipe Reynolds number range of 4000 to 27000. The flow separates at the orifice inlet and is accelerated through its hole in the form of a confined jet. For a given orifice, the mean reattachment length is found to remain fairly independent of the inflow Reynolds number. Velocity and pressure fluctuations attain peak values in regions lying upstream of the mean reattachment point. Under the conditions tested, the orifice jet shows a low frequency flapping motion which was observed to occur at a Strouhal number 0:02 based on the orifice jet velocity and the difference in internal diameters of the pipe and orifice.
11th International Conference on Flow-Induced Vibrations, 4 - 06 Temmuz 2016

Suggestions

Experimental and numerical investigation of pressure swirl atomizers
Sümer, Bülent; Tuncer, İsmail Hakkı; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, unsteady flows inside a pressure swirl atomizer are investigated using experimental and numerical techniques. High Speed Shadowgraphy Technique is used in order to visualize the flow structures inside the atomizer and the resulting spray at high temporal and spatial resolutions. The images of the air core inside the pressure swirl atomizer and the resulting spray formations are captured at four di erent water flow rates. Then, the time variation of the air core diameter at di erent axial loca...
Characterization of Metamaterials using a New Design and Measurement Technique for Microstrip Circuit Applications
Nesimoglu, Tayfun; Sabah, Cumali (2014-12-14)
Characterization of a metamaterial based on an S-Shaped resonator and a feeding transmission line using a new measurement technique is studied in this paper. First, the metamaterial is designed and simulated using conventional methods. Then, it is fabricated on microstrip and excited by using a microstrip transmission feedline. Measurements were carried out using a vector network analyzer by (SubMiniature version A) SMA coaxial terminations without needing any waveguide transmission lines. For both simulate...
Analytical Solution of Nonlinear Strain Hardening Preheated Pressure Tube
Eraslan, Ahmet Nedim (2008-01-01)
The analytical solution of a nonlinear strain hardening preheated tube subjected to internal pressure is presented. A state of generalized plane strain, small deformations, and temperature gradients are assumed. The analytical plastic model is based on the incremental theory of plasticity, Tresca´s yield criterion, its associated flow rule, and a Swift-type nonlinear hardening law. Solutions for linearly hardening and perfectly plastic materials are also presented.
Experimental investigation of unsteady flow field within a two stage axial turbomachine using particle image velocimetry
Uzol, Oğuz; Katz, Joseph; Meneveau, Charles (2002-06-06)
Detailed measurements of the flow field within the entire 2nd stage of a two-stage axial turbomachine are performed using particle image velocimetry. The experiments are performed in a facility that allows unobstructed view on the entire flow field, facilitated using transparent rotor and stator and a fluid that has the same optical index of refraction as the blades. The entire flow field is composed of a “lattice of wakes,” and the resulting wake-wake and wake-blade interactions cause major flow and turbul...
Experimental investigation of drag reduction effects of polymer additives on turbulent pipe flow using ultrasound Doppler velocimetry
Zeybek Vural, Serife; Bayram, Göknur; Uludağ, Yusuf (The Scientific and Technological Research Council of Turkey, 2014-01-01)
Drag reduction in fully developed turbulent pipe flow with 4 concentrations (200 to 500 wppm or mg/kg) of low molecular weight sodium carboxymethylcellulose (CMC) in aqueous solutions was investigated experimentally. Drag reduction was determined by pressure drop measurements. Maximum drag reduction achieved was 22% using 500 wppm CMC solution. To observe the impact of the presence of CMC on the flow, ultrasound Doppler velocimetry (UDV) was employed to monitor the instantaneous velocity distributions. Expe...
Citation Formats
V. Anantharaman, N. Waterson, G. Nakiboglu, M. Perçin, and B. W. Van Oudheusden, “Experimental investigation of turbulent flow through single-hole orifice placed in a pipe by means of time-resolvedparticle image velocimetry and unsteady pressure measurements,” presented at the 11th International Conference on Flow-Induced Vibrations, 4 - 06 Temmuz 2016, The Hague, Hollanda, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86014.