Molecular Dynamics Simulation of Glass Forming Ability in Zn-Mg-X system

2004-12-20

Suggestions

Molecular Dynamics Simulation of Glass Forming Characteristics in Aluminium
Ayas, Can; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (2005-09-28)
Molecular dynamics simulation of water clusters
Güneyler, Emel; Erkoç, Şakir; Department of Physics (1999)
Molecular dynamics investigation of Moire Patterns in double-layer graphene
Sökmen, Gökçe; Toffoli, Hande; Toffoli, Daniele; Department of Micro and Nanotechnology (2012)
Before Moire patterns are discovered in graphene, graphene was assumed to be found in only the rhombohedral form in nature. After transfer of graphene layer over another substrate was achieved by Andre Geim and Konstantin Novoselov, studies on graphene gained momentum. Following this, moire paterns were observed by scanning tunelling microscopy (STM) and high resolution transmision electron microscopy (HR-TEM). However, stability of these structures are still unknown. In this thesis, for the first time in l...
Molecular Dynamics Simulations of ZnO Nanostructures Under Strain: II-Nanorods
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanorods have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, 1 K and 300 K. It has been found that ZnO nanostructures following strain application undergo a structural change depending on temperature and geometry.
Molecular Dynamics Simulations of Zinc Oxide Nanostructures Under Strain: I-Nanoribbons
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanoribbons have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, namely 1 K and 300 K. It has been found that strained ZnO nanostructures undergo a structural change depending on temperature and geometry.
Citation Formats
C. Ayas, A. Mehrabov, and M. V. Akdeniz, “Molecular Dynamics Simulation of Glass Forming Ability in Zn-Mg-X system,” 2004, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86541.