Multi-parameter Mumford-Shah Segmentation

2018-01-01
Genctav, Murat
Tarı, Zehra Sibel

Suggestions

Multi-dimensional hough transform based on unscented transform as a method of track-before-detect /
Şahin, Gözde; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2014)
Track-Before-Detect (TBD) is the problem where target state estimation and detection occur simultaneously, and is a suitable method for the detection of low-SNR targets in unthresholded sensor data. In this thesis, a new Multi-Dimensional Hough Transform (MHT) technique based on Unscented Transform is proposed for the detection of dim targets in radar data. MHT is a TBD method that fuses Hough Transform results obtained on (x-t), (y-t) and (x-y) domains in order to detect a constant velocity target. The pro...
Multi-Criteria Sorting with Category Size Restrictions
Köksalan, Mustafa Murat; Mousseau, Vincent; ÖZPEYNİRCİ, SELİN (2017-01-01)
We consider the multi-criteria sorting problem where alternatives that are evaluated on multiple criteria are assigned into ordered categories. We focus on the sorting problem with category size restrictions, where the decision maker (DM) may have some concerns or constraints on the number of alternatives that should be assigned to some of the categories. We develop an approach based on the UTADIS method that fits an additive utility function to represent the decision maker's preferences. We introduce addit...
Multi-modal egocentric activity recognition using multi-kernel learning
Arabaci, Mehmet Ali; Ozkan, Fatih; Sürer, Elif; Jancovic, Peter; Temizel, Alptekin (2020-04-28)
Existing methods for egocentric activity recognition are mostly based on extracting motion characteristics from videos. On the other hand, ubiquity of wearable sensors allow acquisition of information from different sources. Although the increase in sensor diversity brings out the need for adaptive fusion, most of the studies use pre-determined weights for each source. In addition, there are a limited number of studies making use of optical, audio and wearable sensors. In this work, we propose a new framewo...
Multi-Aspect Data Fusion Applied to Electromagnetic Target Classification using Enetic Algorithm
Sayan, Gönül (Kluwer Academic Publishers, 2002-01-01)
Electromagnetic target detection and classification is an important problem relevant not only to military applications but also to civilian use. In the problem of a breast tumor detection and identification [1], for instance, the main concern is accuracy. In the case of the recognition of a military target such as an aircraft or a ship, on the other hand, speed of classification is as important as the accuracy of the decision as such a decision should be made within a fraction of a second. For...
Multi-aspect data fusion applied to electromagnetic target classification using enetic algorithm
Sayan, Gönül (2000-07-07)
Electromagnetic target detection and classification is an important problem relevant not only to military applications but also to civilian use. In the problem of a breast tumor detection and identification [1], for instance, the main concern is accuracy. In the case of the recognition of a military target such as an aircraft or a ship, on the other hand, speed of classification is as important as the accuracy of the decision as such a decision should be made within a fraction of a second. For the K-pulse t...
Citation Formats
M. Genctav and Z. S. Tarı, Multi-parameter Mumford-Shah Segmentation. 2018, p. 142.