Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of Automatic Mesh Enhancement Based on Monte Carlo Simulation
Date
2002-07-01
Author
Sorguç, Arzu
Metadata
Show full item record
Item Usage Stats
40
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/88067
Collections
Unverified, Article
Suggestions
OpenMETU
Core
Development of cartesian based mesh generator with body fitted boundary layers
Özkan, Merve; Aksel, Mehmet Haluk.; Department of Mechanical Engineering (2019)
In this thesis, the development of a Cartesian based mesh generator with body-fitted boundary layer is presented. The base of the developed mesh generator consists of Cartesian mesh. However, the boundary layer handling is a challenge with Cartesian mesh. Therefore, a body-fitted boundary layer is introduced to the mesh generator by putting a customized open source mesh generator into the main Cartesian based mesh generation. The boundary layer mesh generation part comes from the customized SUMO code, which...
Development of high fill factor and high performance uncooled infrared detector pixels
Küçük, Şeniz Esra; Akın, Tayfun; Department of Electrical and Electronics Engineering (2011)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 μm, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allo...
Development of Bolted Flange Design Tool Based on Artificial Neural Network
Yıldırım, Alper; Akay, Ahmet Arda; Gülaşık, Hasan; Çöker, Demirkan; Gürses, Ercan; Kayran, Altan (ASME International, 2019-7-17)
<jats:p>Finite element analysis (FEA) of bolted flange connections is the common methodology for the analysis of bolted flange connections. However, it requires high computational power for model preparation and nonlinear analysis due to contact definitions used between the mating parts. Design of an optimum bolted flange connection requires many costly finite element analyses to be performed to decide on the optimum bolt configuration and minimum flange and casing thicknesses. In this study, very fast resp...
Development of a multi-scenario simulation model for spare parts inventory optimization in mining operations
Şenses, Sena; Gölbaşı, Onur; Department of Mining Engineering (2021-8)
The growing market competition compels many industries to change their operational structures at strategic and operational levels dramatically. It has been recognized that inventory management requires continuous monitoring and improvement and it is vital for businesses to ensure smooth operations by avoiding production loss and reducing the overall cost of inventory. For various production companies operating in different industries, inventory is considered as one of the most expensive assets. Among differ...
Development of a multigrid accelerated euler solver on adaptively refined two- and three-dimensional cartesian grids
Çakmak, Mehtap; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Cartesian grids offer a valuable option to simulate aerodynamic flows around complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, an adaptively-refined Cartesian grid generator and Euler solver are developed. For the mesh generation part of the algorithm, dynamic data structures are used to determine connectivity information between cells and uniform mesh is created in the domain. Marching squares and cubes algorithms are used to form interfaces of cut and split cells. Geome...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Sorguç, “Development of Automatic Mesh Enhancement Based on Monte Carlo Simulation,” 2002, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88067.