Experimental and numerical investigation of damage interaction mechanism in composites under dynamic transverse loading

2015-10-28
Topac, Ot
Burak, Gozluklu
Gürses, Ercan
Çöker, Demirkan

Suggestions

Experimental and numerical investigation of damage induced by transverse impact in composite beams and plates
Bozkurt, Miraç Onur; Çöker, Demirkan; Department of Aerospace Engineering (2019)
Engineering parts made of composite material are susceptible to impacts such as tool drop, hail strike, and bird strike. Since impact induced damage leads to considerable losses in the residual strength, damage mechanisms should be understood well and modelled accurately. For this purpose, damage process in composite laminates under low-velocity impact is investigated experimentally and numerically for two geometries: (i) beams and (ii) plates. In the first part of the thesis, experimental and numerical stu...
Experimental and numerical investigation of ballistic impact behaviour of high strength aluminium plates
Başaran, Güralp; Gürses, Ercan; Department of Aerospace Engineering (2019)
A hybrid solution method was used to examine the ballistic collision situation to be used in armored vehicle design. This hybrid solution method includes an Artificial Neural Network (ANN) and a Finite Element (FE) solver. MATLAB was used for ANN model, and LSDYNA® was used as FE solver. For this purpose, first ballistic tests were performed, and projectile residual velocities and depth of penetrations were measured. The FE model was confirmed by ballistic tests. After the FE model validation, FE analyses w...
Experimental and numerical investigation of damage process in composite laminates under low-velocity impact
Topaç, Ömer Tanay; Çöker, Demirkan; Gürses, Ercan; Department of Aerospace Engineering (2016)
Damage sensitivity of composites under out-of-plane dynamic loading, and its limited detectability on a structure has long remained a prominent problem in industry. In this study, simulations are compared with the real-time damage formation scheme, with the aim of increasing confidence in failure predictions. Drop-weight impact experiments are carried out on a [0/90]_s CFRP beam laminate. Initiation and progression of damage, consisting of matrix cracks and delamination, are visualized via ultra-high-speed ...
Experimental And Numerical Investigation Of Impact Induced Damage Progression in Fiber Reinforced Composites
Gürses, Ercan; Çöker, Demirkan (null; 2016-08-21)
Damage process in composites subjected to low-velocity impact is investigated both experimentally and numerically. Drop-weight impact experiments are carried out, in which a model unidirectional [0/90]s carbon fiber reinforced polymer (CFRP) laminate beam is impacted by a cylindrical head creating an almost uniform two-dimensional loading condition. Damage sequence is visualized in real-time via ultra-high-speed camera and the resulting final failure patterns are characterized by a digital microscope. I...
Experimental and numerical study of spring-in angle in corner shaped composite parts
Çiçek, Kerem Furkan; Erdal Erdoğmuş, Merve; Kayran, Altan; Department of Mechanical Engineering (2014)
In this study, spring-in problem encountered in corner shaped composite parts which are made of Hexcel’s AS4/8552 unidirectional (UD) prepregs is investigated. For that purpose, a simple two dimensional (2-D) geometrical model available in the literature is implemented and spring-in is calculated according to this model. Then using autoclave process, U-shaped composite parts are manufactured and spring-in measurements are performed on these parts. Finally, a three dimensional (3-D) numerical model in ABAQUS...
Citation Formats
O. Topac, G. Burak, E. Gürses, and D. Çöker, “Experimental and numerical investigation of damage interaction mechanism in composites under dynamic transverse loading,” 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88226.