Osteogenic Properties of 3D-Printed Silica-Carbon-Calcite Composite Scaffolds: Novel Approach for Personalized Bone Tissue Regeneration

2021-01-01
Memarian, Parastoo
Sartor, Francesco
Bernardo, Enrico
Elsayed, Hamada
Ercan, Batur
Delogu, Lucia Gemma
Zavan, Barbara
Isola, Maurizio
Carbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR. Biocompatibility analyses through 3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) activity, hemolysis assay, and Ames test demonstrated excellent biocompatibility of both materials. A significant increase in the extracellular alkaline phosphatase (ALP) activity and expression of runt-related transcription factor (RUNX), ALP, osterix (OSX), and receptor activator of nuclear factor kappa-Beta ligand (RANKL) genes was observed in C-Bio scaffolds compared to those without carbon (Bio). Scanning electron microscopy (SEM) demonstrated excellent cell attachment on both material surfaces; however, the cellular layer on C-Bio fibers exhibited an apparent secretome activity. Based on our findings, graphene can improve cell adhesion, growth, and osteogenic differentiation of cAD-MSCs in vitro. This study proposed carbon as an additive for a novel three-dimensional (3D)-printable biocompatible scaffold which could become the key structural material for bone tissue reconstruction.
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

Suggestions

Anodization of titanium alloys for orthopedic applications
Izmir, Merve; Ercan, Batur (Springer Science and Business Media LLC, 2019-03-01)
In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been w...
Uiltrafast Photoinduced Carrier Dynamics of Organic Semiconductors Measured by Time-resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A.; Heilweil, Edwin J. (2010-01-01)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Ultrafast photoinduced carrier dynamics of organic semiconductors measured by Time-Resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A.; Heilweil, Edwin J. (2010-04-28)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Ultrafast Photoinduced Carrier Dynamics of Organic Semiconductors Measured by Time-Resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A; Heilweil, Edwin J (null, 2010-01-01)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Osteogenic differentiation of MC3T3-E1 cells on different titanium surfaces
HAKKI, SEMA; Bozkurt, S. Buket; HAKKI, ERDOĞAN EŞREF; KORKUSUZ, PETEK; PURALI, NUHAN; Koc, Nursen; Timucin, Muharrem; ÖZTÜRK, ADNAN; Korkusuz, Feza (IOP Publishing, 2012-08-01)
mRNA expressions related to osteogenic differentiation of MC3T3-E1 cells on electro-polished smooth (S), sandblasted small-grit (SSG) and sandblasted large-grit (SLG) surfaces of titanium alloys were investigated in vitro. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 7. Mineralizing tissue-associated proteins, differentiation factors and extracellular matrix enzymes mRNA expressions were measured using Q-PCR. SLG surface upregulated 23 genes over twofolds and...
Citation Formats
P. Memarian et al., “Osteogenic Properties of 3D-Printed Silica-Carbon-Calcite Composite Scaffolds: Novel Approach for Personalized Bone Tissue Regeneration,” INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88823.