Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of Two and Three-Dimensional Euler Solvers for Adaptively Refined Cartesian Grids with Multigrid Applications
Date
2010-06-14
Author
Çakmak, Mehtap
Aksel, Mehmet Haluk
Sert, Cüneyt
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
51
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/89102
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Development of a multigrid accelerated euler solver on adaptively refined two- and three-dimensional cartesian grids
Çakmak, Mehtap; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Cartesian grids offer a valuable option to simulate aerodynamic flows around complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, an adaptively-refined Cartesian grid generator and Euler solver are developed. For the mesh generation part of the algorithm, dynamic data structures are used to determine connectivity information between cells and uniform mesh is created in the domain. Marching squares and cubes algorithms are used to form interfaces of cut and split cells. Geome...
Development of an all speed navier-stokes preconditioner for two and three dimensional flows on hybrid grids
Baş, Onur; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2015)
In this study, a novel Mach uniform preconditioning method is developed for the solution of Euler/Navier-Stokes equations at subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, the conservation of energy equation is preconditioned in the present method to enforce the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. The proposed Mach-uniform ...
Development of a two-dimensional euler solver for unstructured grids
Sezal, İsmail Hakkı; Aksel, M. Haluk; Department of Mechanical Engineering (2001)
Development of a Navier-Stokes solver for multi-block applications
Erdoğan, Erinç; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2004)
A computer code is developed using finite volume technique for solving steady twodimensional and axisymmetric compressible Euler and Navier-Stokes equations for internal flows by أmulti-blockؤ technique. For viscous flows, both laminar and turbulent flow properties can be used. Explicit one step second order accurate Lax-Wendroff scheme is used for time integration. Inviscid solutions are verified by comparing the results of test cases of a support project which was supported by ONERA/France for Turkey T-10...
Development of an incompressible navier-stokes solver with alternating cell direction implicit method on structured and unstructured quadrilateral grids
Baş, Onur; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2007)
In this research, the Alternating Cell Direction Implicit method is used in temporal discretisation of the incompressible Navier-Stokes equations and compared with the well known and widely used Point Gauss Seidel scheme on structured and quadrilateral unstructured meshes. A two dimensional, laminar and incompressible Navier-Stokes solver is developed for this purpose using the artificial compressibility formulation. The developed solver is used to obtain steady-state solutions with implicit time stepping m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Çakmak, M. H. Aksel, and C. Sert, “Development of Two and Three-Dimensional Euler Solvers for Adaptively Refined Cartesian Grids with Multigrid Applications,” 2010, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89102.