Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.)

2019-07-01
Ali, Shafaqat
Rizwan, Muhammad
Hussain, Afzal
Rehman, Muhammad Zia Ur
Ali, Basharat
Yousaf, Balal
Wijaya, Leonard
Alyemeni, Mohammed Nasser
Ahmad, Parvaiz
The application of silicon (Si) under heavy metal stress is well known, but the use of Si nanoparticles (NPs) under metal stress in not well documented. Thus, the experiments were performed to investigate the impacts of soil and foliar applied Si NPs on wheat (Triticum aestivum L.) growth and cadmium (Cd) accumulation in grains under Cd toxicity. The plants were grown under natural environmental conditions and were harvested after physiological maturity (124 days after sowing). The results demonstrated that Si NPs significantly improved, relative to the control, the dry biomass of shoots, roots, spikes and grains by 24-69%, 14-59%, 34-87%, and 31-96% in foliar spray and by 10-51%, 11-49%, 25-69%, and 27-74% in soil applied Si NPs, respectively. The Si NPs enhanced the leaf gas exchange attributes and chlorophyll a and b concentrations, whereas diminished the oxidative stress in leaves which was indicated by the reduced electrolyte leakage and enhancement in superoxide dismutase and peroxidase activities in leaf under Si NPs treatments over the control. When compared with the control, the foliar spray of Si NPs reduced the Cd contents in shoots, roots, and grains by 16-58%, 19-64%, and 20-82%, respectively, whereas soil applied Si NPs reduced the Cd concentrations in shoots, roots, and grains by 11-53%, 10-59%, and 22-83%, respectively. In comparison with the control, Si concentrations significantly (p <= 5 0.05) increased in the shoots and roots in both foliar and soil supplementation of Si NPs. Our results suggested that Si NPs could improve the yield of wheat and more importantly, reduce the Cd concentrations in the grains. Thus, the use of Si NPs might be a feasible approach in controlling Cd entry into the human body via crops.
PLANT PHYSIOLOGY AND BIOCHEMISTRY

Suggestions

Silicon nanowires for network photodetectors and plasmonic applications
Mülazımoğlu, Emre; Ünalan, Hüsnü Emrah; Turan, Raşit; Department of Metallurgical and Materials Engineering (2013)
Being the key component of the semiconductor industry, silicon in nanowire form has gained increased attention. In this thesis, vertical arrays of silicon nanowires (Si NWs) have been fabricated with metal assisted etching method (MAE). MAE method is a simple, solution based and low temperature process. In this method, fabricated nanowires inherit the starting wafer characteristics, such as doping type, density and crystal orientation. In the first part, fabricated NWs in network form have been demonstrated...
Zinc oxide nanowire networks for macroelectronic devices
Ünalan, Hüsnü Emrah; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J. (AIP Publishing, 2009-04-20)
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These r...
TiN(IV) oxide coated gold nanoparticles: synthesis, characterization and investigation of surface enhanced raman scattering activities
Elçi, Aylin; Nalbant Esentürk, Emren; Department of Chemistry (2017)
Noble metal nanoparticles (i.e. gold (Au) and silver (Ag)) have received enormous attention due to their superior optical properties related to localized surface plasmon resonance (LSPR) and their potential applications in sensing, imaging, catalysis and optoelectronic devices. In particular, the ones with anisotropic morphologies have attracted intense interest from the researchers because of their superior optoelectronic properties. High electromagnetic field forms on the nanoparticle surface. The intensi...
Non-fickian moisture absorption in polymers coated with a thin nanocomposite layer
Altan, Altan; Altan, M. Cengiz; Guloglu, GÖRKEM EĞEMEN; Güloğlu, Görkem Eğemen (2014-01-01)
Moisture absorption in polymers and polymeric composites is well known to lead to significant degradation in mechanical properties. Most epoxy based composites may absorb 2 to 5 wt.% moisture when they are subjected to humid environments. Moisture absorption in polymers has been often characterized with Fickian or various non-Fickian models to describe the time-dependent absorption phenomena. Previous experiments have shown that dispersing moderate amounts of nanoclay in an epoxy resin can: (i) reduce the t...
Nickel diffusion coating on austenitic stainless steels & its effect on stress corrosion cracking
Ögel, Bilgehan (1999-04-01)
The effect of electrolytic and electroless nickel diffusion coatings was studied on stress corrosion cracking (SCC) behavior of AISI 304 anstenitic stainless steel. The nickel coating was diffused at the annealing temperature range of AISI 304 steel. It was observed that the diffusion process improves adhesion of the coating to the substrate. The electrolytic Ni-coated and diffused 304 samples showed better resistance to SCC (ASTM G 36-87), when compared to plain AISI 304, 316 and 321 stainless steels. No f...
Citation Formats
S. Ali et al., “Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.),” PLANT PHYSIOLOGY AND BIOCHEMISTRY, pp. 1–8, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89948.