Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Rhodium(0), Ruthenium(0) and Palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane
Date
2021-04-01
Author
Akbayrak, Serdar
ÇAKMAK, GÜLHAN
Öztürk, Tayfur
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
150
views
0
downloads
Cite This
We report the synthesis of magnetically isolable ruthenium(0), rhodium(0), and palladium(0) nanoparticles, supported on carbon-coated magnetic iron particles, and their employment as catalysts in hydrolysis of ammonia borane. Carbon-coated iron (C-Fe) particles are obtained by co-processing of iron powders with methane in a radio frequency thermal plasma reactor. The impregnation of ruthenium(III), rhodium(III) and palladium(II) ions on the carbon-coated iron particles followed by aqueous solution of sodium borohydride leads to the formation of respective metal(0) nanoparticles supported on carbon coated iron, M-0/C-Fe NP (M 1/4 Ru, Rh, and Pd) at room temperature. M-0/C-Fe NPs are characterized using the ICP-OES, XPS, TEM, and EDX techniques and tested as catalysts for hydrolysis of ammonia borane at 298 K. The results reveal that Rh-0/C-Fe, Ru-0/C-Fe, Pd-0/C-Fe catalysts provide turnover frequency of 83, 93, and 29 min(-1), respectively, in this industrially important reaction. More importantly, these magnetically separable metal(0) nanoparticles show very high reusability with no noticeable activity loss in subsequent runs of hydrolysis evolving 3.0 equivalent H-2 per mole of ammonia borane. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
URI
https://hdl.handle.net/11511/90026
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2020.02.023
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Rhodium(0) nanoparticles supported on hydroxyapatite: preparation, characterization and catalytic use in hydrogen generation from hydrolysis of hydrazine borane and ammonia borane
Çelik, Derya; Özkar, Saim; Department of Chemistry (2012)
This dissertation presents the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite, and investigation of their catalytic activity in hydrogen generation from the hydrolysis of hydrazine-borane and ammonia-borane. Rh+3 ions were impregnated on hydroxyapatite by ion-exchange; then rhodium(0) nanoparticles supported on hydroxyapatite were formed in-situ during the hydrolysis of hydrazine-borane at room temperature. The rhodium(0) nanoparticles supported on hydroxyapatite we...
Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Gencturk, Serap; MORKAN, İzzet; Özkar, Saim (Royal Society of Chemistry (RSC), 2014-01-01)
Rhodium(0) nanoparticles supported on the surface of titanium dioxide (Rh(0)@TiO2) were in situ generated from the reduction of rhodium(III) ions impregnated on nanotitania during the hydrolysis of ammonia borane. They were isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The results show that (i) highly dispersed rhodium(0) nanoparticles with sizes in the range 1.3-3.8 nm were formed on the surface of titanium dioxide, (ii) Rh(0)@Ti...
Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: A highly active catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2015-09-07)
Rhodium(0) nanoparticles, supported on nanosized hydroxyapatite (Rh(0)/nanoHAP), were prepared by ion exchange of Rh+3 ions with Ca+2 ions of hydroxyapatite, followed by reduction of the resulting Rh+3/nanoHAP precatalyst during the catalytic methanolysis of ammonia borane (AB) in the presence of tetrabutylammonium dihydrogen phosphate (TBAP) at room temperature. Rh(0)/nanoHAP were characterized by a combination of advance analytical techniques including ICP-OES, XRD, TEM, EDX, XPS, ATR-IR and N-2 adsorptio...
Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2016-02-01)
Nanosilica stabilized rhodium(0) nanoparticles (Rh(0)/nanoSiO(2)), in situ formed from the reduction of rhodium(II) octanoate impregnated on the surface of nanosilica, are active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. Monitoring the hydrogen evolution enables us to follow the kinetics of nanoparticles formation. The resulting sigmoidal kinetic curves are analyzed by using the 2-step mechanism of the slow, continuous nucleation and autocatalytic surface g...
Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2017-07-05)
Palladium(0) nanoparticles supported on cobalt ferrite (Pd degrees/CoFe2O4) are found to be highly active catalyst, providing an unprecedented catalytic activity with a turnover frequency of 290 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at room temperature. However, the initial catalytic activity of Pd degrees/CoFe2O4 catalyst is not preserved after the reuse of the catalyst in hydrolytic dehydrogenation of ammonia borane. The stability of the catalyst is improved by using the pol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Akbayrak, G. ÇAKMAK, T. Öztürk, and S. Özkar, “Rhodium(0), Ruthenium(0) and Palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 13548–13560, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90026.