Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Order compact and unbounded order compact operators
Date
2021-01-01
Author
ERKURŞUN ÖZCAN, NAZİFE
Gezer, Niyazi Anıl
Ozdemir, Saziye Ece
Urganci, Irem Mesude
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
We investigate properties of order compact, unbounded order compact and relatively uniformly compact operators acting on vector lattices. An operator is said to be order compact if it maps an arbitrary order bounded net to a net with an order convergent subnet. Analogously, an operator is said to be unbounded order compact if it maps an arbitrary order bounded net to a net with uo-convergent subnet. After exposing the relationships between order compact, unbounded order compact, semicompact and GAM-compact operators; we study those operators mapping an arbitrary order bounded net to a net with a relatively uniformly convergent subnet. By using the nontopological concepts of order and unbounded order convergences, we derive new results related to these classes of operators.
URI
https://hdl.handle.net/11511/90036
Journal
TURKISH JOURNAL OF MATHEMATICS
DOI
https://doi.org/10.3906/mat-2004-68
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Invariant subspaces of collectively compact sets of linear operators
Alpay, Safak; Misirlioglu, Tunc (Springer Science and Business Media LLC, 2008-01-01)
In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in alg Gamma satisfies Berger-Wang formula, where Gamma is a complete chain of subspaces of X.
Tensor form factors of B -> K-1 transition from QCD light cone sum rules
Alıyev, Tahmasıb; Savcı, Mustafa (Elsevier BV, 2011-05-30)
The tensor form factors of B into p-wave axial vector meson transition are calculated within light cone QCD sum rules method. The parametrizations of the tensor form factors based on the series expansion are presented.
Affine Equivalency and Nonlinearity Preserving Bijective Mappings over F-2
Sertkaya, Isa; Doğanaksoy, Ali; Uzunkol, Osmanbey; Kiraz, Mehmet Sabir (2014-09-28)
We first give a proof of an isomorphism between the group of affine equivalent maps and the automorphism group of Sylvester Hadamard matrices. Secondly, we prove the existence of new nonlinearity preserving bijective mappings without explicit construction. Continuing the study of the group of nonlinearity preserving bijective mappings acting on n-variable Boolean functions, we further give the exact number of those mappings for n <= 6. Moreover, we observe that it is more beneficial to study the automorphis...
Equivariant Picard groups of the moduli spaces of some finite Abelian covers of the Riemann sphere
Ozan, Yıldıray (2023-03-01)
In this note, following Kordek's work we will compute the equivariant Picard groups of the moduli spaces of Riemann surfaces with certain finite abelian symmetries.
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. ERKURŞUN ÖZCAN, N. A. Gezer, S. E. Ozdemir, and I. M. Urganci, “Order compact and unbounded order compact operators,”
TURKISH JOURNAL OF MATHEMATICS
, pp. 634–646, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90036.