Full lattice convergence on Riesz spaces

Aydın, Abdullah
Emelyanov, Eduard
Gorokhova, Svetlana
The full lattice convergence on a locally solid Riesz space is an abstraction of the topological, order, and relatively uniform convergences. We investigate four modifications of a full convergence c on a Riesz space. The first one produces a sequential convergence sc. The second makes an absolute c-convergence and generalizes the absolute weak convergence. The third modification makes an unbounded c-convergence and generalizes various unbounded convergences recently studied in the literature. The last one is applicable whenever c is a full convergence on a commutative l-algebra and produces the multiplicative modification mc of c. We study general properties of full lattice convergence with emphasis on universally complete Riesz spaces and on Archimedean f -algebras. The technique and results in this paper unify and extend those which were developed and obtained in recent literature on unbounded convergences.


Unbounded p-convergence in lattice-normed vector lattices
Marabeh, Mohammad A. A.; Emel’yanov, Eduard; Department of Mathematics (2017)
The main aim of this thesis is to generalize unbounded order convergence, unbounded norm convergence and unbounded absolute weak convergence to lattice-normed vector lattices (LNVLs). Therefore, we introduce the follwing notion: a net $(x_alpha)$ in an LNVL $(X,p,E)$ is said to be unbounded $p$-convergent to $x in X$ (shortly, $x_alpha$ $up$- converges to $x$) if $p(lvert x_alpha −x rvert wedge u) xrightarrow{o}0$ in $E$ for all $u ∈ X_+$. Throughout this thesis, we study general properties of $up$-converge...
Bibounded uo-convergence and b-property in vector lattices
Alpay, Safak; Emelyanov, Eduard; Gorokhova, Svetlana (2021-01-01)
We define bidual bounded uo-convergence in vector lattices and investigate relations between this convergence and b-property. We prove that for a regular Riesz dual system ⟨ X, X∼⟩ , X has b-property if and only if the order convergence in X agrees with the order convergence in X∼ ∼.
Unbounded absolutely weak Dunford-Pettis operators
ERKURŞUN ÖZCAN, NAZİFE; Gezer, Niyazi Anıl; Zabeti, Omid (2019-01-01)
In the present article, we expose various properties of unbounded absolutely weak Dunford-Pettis and unbounded absolutely weak compact operators on a Banach lattice E. In addition to their topological and lattice properties, we investigate relationships between M-weakly compact operators, L-weakly compact operators, and order weakly compact operators with unbounded absolutely weak Dunford-Pettis operators. We show that the square of any positive uaw-Dunford-Pettis (M-weakly compact) operator on an order con...
um-Topology in multi-normed vector lattices
Dabboorasad, Y. A.; Emelyanov, Eduard; Marabeh, M. A. A. (2018-04-01)
Let be a separating family of lattice seminorms on a vector lattice X, then is called a multi-normed vector lattice (or MNVL). We write if for all . A net in an MNVL is said to be unbounded m-convergent (or um-convergent) to x if for all . um-Convergence generalizes un-convergence (Deng et al. in Positivity 21:963-974, 2017; KandiAc et al. in J Math Anal Appl 451:259-279, 2017) and uaw-convergence (Zabeti in Positivity, 2017. doi:10.1007/s11117-017-0524-7), and specializes up-convergence (AydA +/- n et al. ...
o tau-Continuous, Lebesgue, KB, and Levi Operators Between Vector Lattices and Topological Vector Spaces
Alpay, Safak; Emelyanov, Eduard; Gorokhova, Svetlana (2022-06-01)
We investigate o tau-continuous/bounded/compact and Lebesgue operators from vector lattices to topological vector spaces; the Kantorovich-Banach operators between locally solid lattices and topological vector spaces; and the Levi operators from locally solid lattices to vector lattices. The main idea of operator versions of notions related to vector lattices lies in redistributing topological and order properties of a topological vector lattice between the domain and range of an operator under investigation...
Citation Formats
A. Aydın, E. Emelyanov, and S. Gorokhova, “Full lattice convergence on Riesz spaces,” INDAGATIONES MATHEMATICAE-NEW SERIES, pp. 658–690, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90694.