Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Scale-Adaptive ICP
Date
2021-07-01
Author
Sahillioğlu, Yusuf
Kavan, Ladislav
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
177
views
0
downloads
Cite This
We present a new scale-adaptive ICP (Iterative Closest Point) method which aligns two objects that differ by rigid transformations (translations and rotations) and uniform scaling. The motivation is that input data may come in different scales (measurement units) which may not be known a priori, or when two range scans of the same object are obtained by different scanners. Classical ICP and its many variants do not handle this scale difference problem adequately. Our novel solution outperforms three different methods that estimate scale prior to alignment and a fourth method that, similar to ours, jointly optimizes for scale during the alignment.
Subject Keywords
Pairwise registration
,
Shape registration
,
Shape alignment
,
Scale-adaptive
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108860331&origin=inward
https://hdl.handle.net/11511/91255
Journal
Graphical Models
DOI
https://doi.org/10.1016/j.gmod.2021.101113
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Detail-Preserving Mesh Unfolding for Nonrigid Shape Retrieval
Sahillioğlu, Yusuf (2016-06-01)
We present a shape deformation algorithm that unfolds any given 3D shape into a canonical pose that is invariant to nonrigid transformations. Unlike classical approaches, such as least-squares multidimensional scaling, we preserve the geometric details of the input shape in the resulting shape, which in turn leads to a content-based nonrigid shape retrieval application with higher accuracy. Our optimization framework, fed with a triangular or a tetrahedral mesh in 3D, tries to move each vertex as far away f...
Shape from silhouette using topology-adaptive mesh deformation
Yemez, Y.; Sahillioğlu, Yusuf (2009-10-01)
We present a computationally efficient and robust shape from silhouette method based on topology-adaptive mesh deformation, which can produce accurate, smooth, and topologically consistent 3D mesh models of complex real objects. The deformation scheme is based on the conventional snake model coupled with local mesh transform operations that control the resolution and uniformity of the deformable mesh. Based on minimum and maximum edge length constraints imposed on the mesh, we describe a fast collision dete...
CONTEXT BASED SUPER RESOLUTION IMAGE RECONSTRUCTION
Turgay, Emre; Akar, Gözde (2009-08-21)
In this paper a context based super-resolution (SR) image reconstruction method is proposed. The proposed maximum a-posteriori (MAP) based estimator identifies local gradients and textures for selecting the optimal SR method for the region of interest. Texture segmentation and gradient map estimation are done prior to the reconstruction stage. Gradient direction is used for optimal noise reduction along the edges for non-textured regions. On the other hand, regularization term is cancelled for textured regi...
Scale Normalization for Isometric Shape Matching
Sahillioğlu, Yusuf; Yemez, Y. (2012-09-01)
We address the scale problem inherent to isometric shape correspondence in a combinatorial matching framework. We consider a particular setting of the general correspondence problem where one of the two shapes to be matched is an isometric (or nearly isometric) part of the other up to an arbitrary scale. We resolve the scale ambiguity by finding a coarse matching between shape extremities based on a novel scale-invariant isometric distortion measure. The proposed algorithm also supports (partial) dense matc...
A probabilistic sparse skeleton based object detection
Altinoklu, Burak; Ulusoy, İlkay; Tarı, Zehra Sibel (Elsevier BV, 2016-11)
We present a Markov Random Field (MRF) based skeleton model for object shape and employ it in a probabilistic chamfer-matching framework for shape based object detection. Given an object category, shape hypotheses are generated from a set of sparse (coarse) skeletons guided by suitably defined unary and binary potentials at and between shape parts. The Markov framework assures that the generated samples properly reflect the observed or desired shape variability. As the model employs a sparsely sampled skele...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Sahillioğlu and L. Kavan, “Scale-Adaptive ICP,”
Graphical Models
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108860331&origin=inward.