Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A comparative analysis and rapid performance prediction of polymer flooding process by coupling reservoir simulation with neural networks
Date
2021-01-01
Author
Zarepakzad, Negar
Artun, Emre
Durgut, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
129
views
0
downloads
Cite This
Accelerated technological progresses offer massive amounts of data, prompting decision making for any asset to be more complicated and challenging than before. Data-driven modelling has gained popularity among petroleum engineering professionals by turning big data into valuable insights that introduces fast and reliable decision making. In this study, a viscosifying polymer flooding performance-forecasting tool is developed using an artificial neural network-based data-driven model. A wide variety of reservoir and operational scenarios are generated to inclusively cover possible conditions of the process. Each scenario goes through no injection, water-only flooding, polymer followed by waterflooding and polymer-only flooding schemes. Neural network models were trained with three representative performance indicators derived from simulator outputs; efficiency, water-cut and recovery factor. Practicality of the tool in assessing probabilistic and deterministic predictions is demonstrated with a real polymer-flooding case of Daqing Oil Field.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108869180&origin=inward
https://hdl.handle.net/11511/91368
Journal
International Journal of Oil, Gas and Coal Technology
DOI
https://doi.org/10.1504/ijogct.2021.115801
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
A singular value decomposition approach for recommendation systems
Osmanlı, Osman Nuri; Toroslu, İsmail Hakkı; Department of Computer Engineering (2010)
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. Recommender systems are one of the most...
A deep learning approach for the transonic flow field predictions around airfoils
Duru, Cihat; Alemdar, Hande; Baran, Özgür Uğraş (2022-01-01)
Learning from data offers new opportunities for developing computational methods in research fields, such as fluid dynamics, which constantly accumulate a large amount of data. This study presents a deep learning approach for the transonic flow field predictions around airfoils. The physics of transonic flow is integrated into the neural network model by utilizing Reynolds-averaged Navier–Stokes (RANS) simulations. A detailed investigation on the performance of the model is made both qualitatively and quant...
Using tag similarity in SVD-based recommendation systems
Osmanli, Osman Nuri; Toroslu, İsmail Hakkı (2011-12-01)
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatte...
A Numerical Approach to Simulating Oxidation in Thermal Barrier Coatings
Saeidi, Farid; Gürses, Ercan; Aslan, Özgür (Elsevier, Elsevier, 2020-01-01)
Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to mod...
A case study in weather pattern searching using a spatial data warehouse model
Köylü, Çağlar; Akyürek, Sevda Zuhal; Department of Geodetic and Geographical Information Technologies (2008)
Data warehousing and Online Analytical Processing (OLAP) technology has been used to access, visualize and analyze multidimensional, aggregated, and summarized data. Large part of data contains spatial components. Thus, these spatial components convey valuable information and must be included in exploration and analysis phases of a spatial decision support system (SDSS). On the other hand, Geographic Information Systems (GISs) provide a wide range of tools to analyze spatial phenomena and therefore must be ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Zarepakzad, E. Artun, and İ. Durgut, “A comparative analysis and rapid performance prediction of polymer flooding process by coupling reservoir simulation with neural networks,”
International Journal of Oil, Gas and Coal Technology
, pp. 227–246, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108869180&origin=inward.