Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Online monitoring of transformer through stream clustering of partial discharge signals
Download
index.pdf
Date
2019-05-01
Author
Anşin, Berfin
Phung, B. Toan
Blackburn, Trevor
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
35
downloads
Cite This
The general method for identifying the partial discharge type in a power transformer is based on their fingerprints in the form of phase-resolved discharge patterns. In the case of multiple defects, traditional clustering methods can be applied for separation of active sources. However, such an approach is impractical for online real-time monitoring due to the very large data size. In this paper a new method using stream clustering is introduced. The method separates the active sources by processing the signal once it is captured, then only a synopsis of the discharge data is stored. Two stream clustering algorithms: Density Grids and DenStream are employed. Through measurements obtained from laboratory experimental setups (corona, surface discharge, transformer defect model) performance of the proposed algorithms are evaluated. It is shown that stream clustering method is able to separate the constituent components involved in the stream of a multi-source discharge signal without the need to store a large amount of information. The performance of the Density Grids method depends on a limited number of features that it can accommodate. In comparison, the DenStream method can capture more features which enable better separation of active sources at the expense of longer processing time.
URI
https://hdl.handle.net/11511/92061
Journal
IET SCIENCE MEASUREMENT & TECHNOLOGY
DOI
https://doi.org/10.1049/iet-smt.2018.5389
Collections
Department of Basic English, Article
Suggestions
OpenMETU
Core
Multi-source Partial Discharge Signals Discrimination by Six Bandpass filters and DBSCAN Clustering
Anşin, Berfin (2018-01-01)
Partial discharge (PD) signals generated by defects in a transformer insulation can be captured through measurement instruments and they may be used, after preprocessing, to discriminate the PD Sources. Some of the artificial defect models, such as: corona, internal cavity and surface discharge in air are developed in the laboratory. These defect models are put in parallel under a high voltage stress. The PD signals stemmed from these sets of multiple PD sources are captured. In this paper six bandpass filt...
Spatial stabilization of Townsend and glow discharges with a semiconducting cathode
Salamov, BG; Ellialtioglu, S; Akınoğlu, Bülent Gültekin; Lebedeva, NN; Patriskii, LG (IOP Publishing, 1996-03-14)
The physical processes determining the functions of an ionization system and especially the discharge stabilization by the distributed resistance of a semiconducting cathode in such a system are studied. The current-voltage (I-U) characteristics of the system with a semiconducting GaAs cathode are obtained experimentally as functions of the gap pressure P (16-760 Torr) and inter-electrode distance d (10 mu m to 5 mm), which are varied for the first time over very wide ranges. The experiments showed that the...
Micro processing by intense fast electron beam
Goktas, H; Kirkici, H; Oke, G; Udrea, M (2001-06-22)
Generation of intense electron beams by superposing two discharges, namely a low pressure do glow discharge and a high current pulsed discharge at pressures and voltages very similar to that of the pseudo-spark gap devices, has been reported previously [1, 2]. The small diameter, high peak current and short pulse length are the characteristics of the electron beam generated using this technique. In this technique, no high vacuum facilities are necessary, and many applications such as micro processing, X-ray...
Spatial variations of non-uniform argon glow discharge
Akbar, D.; Bilikmen, S.; Akbar, H. (Springer Science and Business Media LLC, 2006-01-01)
The spatial variation of a non-uniform glow discharge due to the different diameters of the same discharge tube on the plasma parameters is attracting a considerable attention. For this reason the fundamental spatial plasma parameters of an argon. glow discharge have been measured by using fast three couple of Langmuir double probe (TCDP) technique. The orbital motion limited (OML) theory has been used, since the probe radius is smaller than Debye length xi < 1. The axial and radial variation of the electro...
Characteristic features of an ionization system with semiconducting cathode
SALAMOV, BAKHTİYAR; ALTINDAL, ŞEMSETTİN; ÖZER, METİN; Colakoglu, K; Bulur, Enver (EDP Sciences, 1998-06-01)
The characteristic features of a de discharge genera.ted between parallel plate electrodes and especially the discharge stabilization by the GaAs semiconducting cathode in such a system are studied. The cathode was irradiated on the back-side with IR light in a particular wavelength range that was used to control the photoconductivity of the material. The semiconductor material was found to stabilize the discharge. The current-voltage and radiation-voltage characteristics of the gas discharge cell with a se...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Anşin, B. T. Phung, and T. Blackburn, “Online monitoring of transformer through stream clustering of partial discharge signals,”
IET SCIENCE MEASUREMENT & TECHNOLOGY
, vol. 13, no. 3, pp. 409–415, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92061.