A spectral solenoidal-galerkin method for flow past a circular cylinder

2019-01-01
© Springer Nature Switzerland AG 2019.Flow past a circular cylinder embodies many interesting features of fluid dynamics as a challenging fluid phenomenon. In this preliminary study, flow past a cylinder is simulated numerically using a Galerkin procedure based on solenoidal bases. The advantages of using solenoidal bases are twofold: first, the incompressibility condition is exactly satisfied due to the expansion of the flow field in terms of the solenoidal bases and second, the pressure term is eliminated in the process of Galerkin projection onto solenoidal dual bases. The formulation is carried out using a mapped nodal Fourier expansion in the angular variable while a modal polynomial expansion is used in the radial variable. A variational approach to recover the pressure variable is also presented. Some numerical tests are performed.
European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017

Suggestions

A Spectral Solenoidal-Galerkin Method for Flow Past a Circular Cylinder
Tarman, Işık Hakan (null; 2017-09-25)
Flow past a circular cylinder embodies many interesting features of fluid dynamics as a challenging fluid phenomenon. In this preliminary study, flow past a cylinder is simulated numerically using a Galerkin procedure based on solenoidal bases. The advantages of using solenoidal bases are twofold: first, the incompressibility condition is exactly satisfied due to the expansion of the flow field in terms of the solenoidal bases and second, the pressure term is eliminated in the process of Galerkin projection...
A subgrid stabilization finite element method for incompressible magnetohydrodynamics
Belenli, Mine A.; Kaya Merdan, Songül; Rebholz, Leo G.; Wilson, Nicholas E. (2013-07-01)
This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element spatial discretization with Scott-Vogelius mixed finite elements and semi-implicit backward Euler temporal discretization. We prove its unconditional stability and prove how the coarse mesh can be chosen so that optimal convergence ca...
A constitutive model for finite deformation of amorphous polymers
FLEISCHHAUER, R.; Dal, Hüsnü; KALISKE, M.; SCHNEIDER, K. (2012-12-01)
The paper introduces a three-dimensional constitutive model for the mechanical behavior of amorphous polymers, thermosets and thermoplastics. The approach is formulated in terms of finite deformations, appropriate for glassy polymers. The rheology of the model consists of a Langevin-type free energy function for the energy storage due to molecular alignment connected in parallel to a Maxwell element with a viscoplastic dashpot. The model proves successful for the constitutive description of glassy polymers ...
A NUMERICAL-SIMULATION OF THE AXISYMMETRICAL VORTEX BREAKDOWN IN A TUBE
Aksel, Mehmet Haluk; KAYA, MT (1992-08-01)
The axisymmetric vortex breakdown of a laminar, incompressible, viscous, and swirling flow in a cylindrical tube is simulated. The numerical solutions of the time-dependent axisymmetric angular momentum and the vorticity transport equations are obtained by using the finite element method. Linear and quadratic isoparametric elements are used for the space discretization, while the leapfrog time integration scheme is employed for the time discretization. The iteration process is started with the numerical sol...
A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (Elsevier BV, 2018-07-01)
In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the n...
Citation Formats
I. H. Tarman, “A spectral solenoidal-galerkin method for flow past a circular cylinder,” Voss, Norveç, 2019, vol. 126, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060011242&origin=inward.